四川省绿然国际学校2024届数学高一下期末联考试题含解析_第1页
四川省绿然国际学校2024届数学高一下期末联考试题含解析_第2页
四川省绿然国际学校2024届数学高一下期末联考试题含解析_第3页
四川省绿然国际学校2024届数学高一下期末联考试题含解析_第4页
四川省绿然国际学校2024届数学高一下期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省绿然国际学校2024届数学高一下期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.同时具有性质:“①最小正周期是;②图象关于直线对称;③在上是单调递增函数”的一个函数可以是()A. B.C. D.2.函数的部分图像如图所示,则A.B.C.D.3.已知等比数列的前项和为,,,则()A.31 B.15 C.8 D.74.不等式的解集是()A. B.C.或 D.或5.在△ABC中,角A、B、C所对的边分别为,己知A=60°,,则B=()A.45° B.135° C.45°或135° D.以上都不对6.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.设函数,若对任意的实数x都成立,则的最小值为()A. B. C. D.18.直线经过点和,则直线的倾斜角为()A. B. C. D.9.在等差数列中,,则()A.5 B.8 C.10 D.1410.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.平行于圆台底面的平面截圆台,截面是圆面D.直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥二、填空题:本大题共6小题,每小题5分,共30分。11.从原点向直线作垂线,垂足为点,则的方程为_______.12.函数的最小正周期是__________.13.把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则______________.14.方程的解=__________.15.已知当时,函数(且)取得最小值,则时,的值为__________.16.已知,则____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知A(-1,0),B(2,0),动点M(x,y)满足MAMB=12,设动点(1)求动点M的轨迹方程,并说明曲线C是什么图形;(2)过点1,2的直线l与曲线C交于E,F两点,若|EF|=455(3)设P是直线x+y+8=0上的点,过P点作曲线C的切线PG,PH,切点为G,H,设C'(-2,0),求证:过18.在△ABC中,a=3,b−c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.19.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?20.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.21.已知数列为等差数列,且满足,,数列的前项和为,且,.(Ⅰ)求数列,的通项公式;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用正弦函数、余弦函数的图象和性质,逐一检验,可得结论.【详解】A,对于y=cos(),它的周期为4π,故不满足条件.B,对于y=sin(2x),在区间上,2x∈[,],故该函数在区间上不是单调递增函数,故不满足条件.C,对于y=cos(2x),当x时,函数y,不是最值,故不满足②它的图象关于直线x对称,故不满足条件.D,对于y=sin(2x),它的周期为π,当x时,函数y=1,是函数的最大值,满足它的图象关于直线x对称;且在区间上,2x∈[,],故该函数在区间上是单调递增函数,满足条件.故选:D.【点睛】本题主要考查了正弦函数、余弦函数的图象和性质,属于中档题.2、A【解析】试题分析:由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图像与性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.3、B【解析】

利用基本元的思想,将已知条件转化为的形式,由此求得,进而求得.【详解】由于数列是等比数列,故,由于,故解得,所以.故选:B.【点睛】本小题主要考查等比数列通项公式的基本量的计算,考查等比数列前项和公式,属于基础题.4、B【解析】

由题意,∴,即,解得,∴该不等式的解集是,故选.5、A【解析】

利用正弦定理求出的值,再结合,得出,从而可得出的值。【详解】由正弦定理得,,,则,所以,,故选:A。【点睛】本题考查利用正弦定理解三角形,要注意正弦定理所适用的基本情形,同时在求得角时,利用大边对大角定理或两角之和不超过得出合适的答案,考查计算能力,属于中等题。6、C【解析】

利用直线与平面平行、垂直的判断即可。【详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【点睛】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。7、B【解析】

对任意的实数x都成立,说明三角函数f(x)在时取最大值,利用这个信息求ω的值.【详解】由题意,当时,取到最大值,所以,解得,因为,所以当时,取到最小值.故选:B.【点睛】本题考查正弦函数的图象及性质,三角函数的单调区间、对称轴、对称中心、最值等为常考题,本题属于基础题.8、D【解析】

算出直线的斜率后可得其倾斜角.【详解】设直线的斜率为,且倾斜角为,则,根据,而,故,故选D.【点睛】本题考查直线倾斜角的计算,属于基础题.9、B【解析】试题分析:设等差数列的公差为,由题设知,,所以,所以,故选B.考点:等差数列通项公式.10、D【解析】

根据旋转体的定义与性质,对选项中的命题分析、判断正误即可.【详解】A.圆柱的侧面展开图是一个矩形,正确;B.∵同一个圆锥的母线长相等,∴圆锥过轴的截面是一个等腰三角形,正确;C.根据平行于圆台底面的平面截圆台截面的性质可知:截面是圆面正确;D.直角三角形绕它的一条直角边旋转一周形成的曲面围成的几何体是圆锥,而直角三角形绕它的斜边旋转一周形成的曲面围成的几何体是两个对底面的两个圆锥,因此D不正确.故选:D.【点睛】本题考查了命题的真假判断,解题的关键是理解旋转体的定义与性质的应用问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

先求得直线的斜率,由直线垂直时的斜率关系可求得直线的斜率.再根据点斜式即可求得直线的方程.【详解】从原点向直线作垂线,垂足为点则直线的斜率由两条垂直直线的斜率关系可知根据点斜式可得直线的方程为化简得故答案为:【点睛】本题考查了直线垂直时的斜率关系,点斜式方程的应用,属于基础题.12、;【解析】

利用余弦函数的最小正周期公式即可求解.【详解】因为函数,所以,故答案为:【点睛】本题考查了含余弦函数的最小正周期,需熟记求最小正周期的公式,属于基础题.13、1028【解析】图乙中第行有个数,第行最后的一个数为,前行共有个数,由知出现在第45行,第45行第一个数为1937,第个数为2011,所以.[来14、-1【解析】分析:由对数方程,转化为指数方程,解方程即可.详解:由log2(1﹣2x)=﹣1可得(1﹣2x)=,解方程可求可得,x=﹣1故答案为:﹣1点睛:本题主要考查了对数方程的求解,解题中要善于利用对数与指数的转化,属于基础题.15、3【解析】

先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.16、【解析】

由于,则,然后将代入中,化简即可得结果.【详解】,,,故答案为.【点睛】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)动点M的轨迹方程为(x+2)2+y2=4,曲线C是以(-2,0)为圆心,2为半径的圆(2)l的方程为2x-y=0或【解析】

(1)利用两点间的距离公式并结合条件MAMB=12,化简得出曲线C的方程,根据曲线(2)根据几何法计算出圆心到直线的距离d=455,对直线l分两种情况讨论,一是斜率不存在,一是斜率存在,结合圆心到直线的距离d=(3)设点P的坐标为m,-m-8,根据切线的性质得出PG⊥GC',从而可得出过G、P、C'x2【详解】(1)由题意得(x+1)2+y所以动点M的轨迹方程为(x+2)2曲线C是以(-2,0)为圆心,2为半径的圆;(2)①当直线l斜率不存在时,x=1,不成立;②当直线l的斜率存在时,设l:y-2=k(x-1),即kx-y+2-k=0,圆心C(-2,0)到l的距离为d=-3k+21+∴d2=165=(2-3k)2∴l的方程为2x-y=0或2x-29y+56=0;(3)证明:∵P在直线x+y+8=0上,则设P(m,-m-8)∵C'为曲线C的圆心,由圆的切线的性质可得PG⊥GC',∴经过G,P,C'的三点的圆是以PC'为直径的圆,则方程为(x+2)(x-m)+y(y+m+8)=0,整理可得x2令x2+y解得x=-2y=0或则有经过G,P,C'三点的圆必过定点,所有定点的坐标为(-2,0),(-5,-3).【点睛】本题考查动点轨迹方程的求法,考查直线截圆所得弦长的计算以及动圆所过定点的问题,解决圆所过定点问题,关键是要将圆的方程求出来,对带参数的部分提公因式,转化为方程组求公共解问题.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意列出关于a,b,c的方程组,求解方程组即可确定b,c的值;(Ⅱ)由题意结合正弦定理和两角和差正余弦公式可得的值.【详解】(Ⅰ)由题意可得:,解得:.(Ⅱ)由同角三角函数基本关系可得:,结合正弦定理可得:,很明显角C为锐角,故,故.【点睛】本题主要考查余弦定理、正弦定理的应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.19、定价为每桶7元,最大利润为440元.【解析】

若设定价在进价的基础上增加元,日销售利润为元,则,其中,整理函数,可得取何值时,有最大值,即获得最大利润【详解】设定价在进价的基础上增加元,日销售利润为元,则,由于,且,所以,;即,.所以,当时,取最大值.此时售价为,此时的最大利润为440元.【点睛】本题主要考查二次函数的应用,意在考查学生对该知识的理解掌握水平,属于基础题.20、(1);,,;(2)乙机床加工零件的质量更稳定.【解析】

(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的平均值相同,又所以乙机床加工零件的质量更稳

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论