




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年天一大联考海南省高一数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在ΔABC中,a,b,c分别为A,B,C的对边,如果a,b,c成等差数列,B=30°,ΔABC的面积为32,那么b=A.1+32 B.1+3 C.2.一个圆柱的底面直径与高都等于球的直径,设圆柱的侧面积为,球的表面积为,则()A. B. C. D.13.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.4.设a,b,c表示三条不同的直线,M表示平面,给出下列四个命题:其中正确命题的个数有()①若a//M,b//M,则a//b;②若b⊂M,a//b,则a//M;③若a⊥c,b⊥c,则a//b;④若a//c,b//c,则a//b.A.0个 B.1个 C.2个 D.3个5.从总数为的一批零件中抽取一个容量为的样本,若每个零件被抽取的可能性为,则为()A. B. C. D.6.在中,且,则等于()A. B. C. D.7.从数字0,1,2,3,4中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A. B. C. D.8.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.69.在平面直角坐标系中,直线与x、y轴分别交于点、,记以点为圆心,半径为r的圆与三角形的边的交点个数为M.对于下列说法:①当时,若,则;②当时,若,则;③当时,M不可能等于3;④M的值可以为0,1,2,3,4,5.其中正确的个数为()A.1 B.2 C.3 D.410.在等腰梯形ABCD中,,点E是线段BC的中点,若,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点和点,点在轴上,若的值最小,则点的坐标为______.12._________________;13.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.14.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________15.若,且,则的最小值是______.16.设,,,,则数列的通项公式=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,为内一点,.(1)若,求;(2)若,求的面积.18.已知函数,.(1)求函数的值域;(2)若恒成立,求m的取值范围.19.解关于x的不等式20.已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式.21.若直线与轴,轴的交点分别为,圆以线段为直径.(Ⅰ)求圆的标准方程;(Ⅱ)若直线过点,与圆交于点,且,求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由余弦定理得b2==14ac=32⇒ac=6,因为a , 考点:余弦定理;三角形的面积公式.2、D【解析】
由圆柱的侧面积及球的表面积公式求解即可.【详解】解:设圆柱的底面半径为,则,则圆柱的侧面积为,球的表面积为,则,故选:D.【点睛】本题考查了圆柱的侧面积的求法,重点考查了球的表面积公式,属基础题.3、B【解析】
试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.4、B【解析】
由空间直线的位置关系及空间直线与平面的位置关系逐一判断即可得解.【详解】解:对于①,若a//M,b//M,则a//b或与相交或与异面,即①错误;对于②,若b⊂M,a//b,则a//M或a⊂M,即②错误;对于③,若a⊥c,b⊥c,则a//b或与相交或与异面,即③错误;对于④,若a//c,b//c,由空间直线平行的传递性可得a//b,即④正确,即正确命题的个数有1个,故选:B.【点睛】本题考查了空间直线的位置关系,重点考查了空间直线与平面的位置关系,属基础题.5、A【解析】
由样本容量、总容量以及个体入样可能性三者之间的关系,列等式求出的值.【详解】由题意可得,解得,故选A.【点睛】本题考查抽样概念的理解,了解样本容量、总体容量以及个体入样可能性三者之间的关系是解题的关键,考查计算能力,属于基础题.6、A【解析】
在△ABC中,利用正弦定理与两角和的正弦化简已知可得,sin(A+C)=sinB,结合a>b,即可求得答案.【详解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故选A.【点睛】本题考查两角和与差的正弦函数与正弦定理的应用,考查了大角对大边的性质,属于中档题.7、B【解析】
直接利用古典概型的概率公式求解.【详解】从数字0,1,2,3,4中任取两个不同的数字构成一个两位数有10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43,共16个,其中大于30的有31,32,34,40,41,42,43,共7个,故所求概率为.故选B【点睛】本题主要考查古典概型的概率的计算,意在考查学生对该知识的理解掌握水平,属于基础题.8、B【解析】
由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【点睛】本题主要考查学生的数学抽象和数学建模能力.9、B【解析】
作出直线,可得,,,分别考虑圆心和半径的变化,结合图形,即可得到所求结论.【详解】作出直线,可得,,,①当时,若,当圆与直线相切,可得;当圆经过点,即,则或,故①错误;②当时,若,圆,当圆经过O时,,交点个数为2,时,交点个数为1,则,故②正确;③当时,圆,随着的变化可得交点个数为1,2,0,不可能等于3,故③正确;④的值可以为0,1,2,3,4,不可以为5,故④错误.故选:B.【点睛】本题考查命题的真假判断与应用,考查直线和圆的位置关系,考查分析能力和计算能力.10、B【解析】
利用平面向量的几何运算,将用和表示,根据平面向量基本定理得,的值,即可求解.【详解】取AB的中点F,连CF,则四边形AFCD是平行四边形,所以,且因为,,,∴故选B.【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中根据平面向量的基本定理,将用和进行表示,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
作出图形,作点关于轴的对称点,由对称性可知,结合图形可知,当、、三点共线时,取最小值,并求出直线的方程,与轴方程联立,即可求出点的坐标.【详解】如下图所示,作点关于轴的对称点,由对称性可知,则,当且仅当、、三点共线时,的值最小,直线的斜率为,直线的方程为,即,联立,解得,因此,点的坐标为.故答案为:.【点睛】本题考查利用折线段长的最小值求点的坐标,涉及两点关于直线对称性的应用,考查数形结合思想的应用,属于中等题.12、1【解析】
利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.13、【解析】
,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.14、2019【解析】
根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.15、8【解析】
利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.16、2n+1【解析】由条件得,且,所以数列是首项为4,公比为2的等比数列,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)求出,,中由余弦定理即可求得;(2)设,利用正弦定理表示出,求得,利用面积公式即可得解.【详解】(1)在中,,为内一点,,,所以,中,由余弦定理得:所以中,由余弦定理得:;(2),设,在中,,在中,由正弦定理,即,,所以,的面积.【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.18、(1);(2)或.【解析】
(1)根据用配方法求出二次函数对称轴横坐标,可得最小值,再代入端点求得最大值,可得函数的值域;(2)由(1)可得的最大值为6,转化为求恒成立,求出m的取值范围即可.【详解】(1)因为,而,,,所以函数的值域为.(2)由(1)知,函数的值域为,所以的最大值为6,所以由得,解得或,故实数m的取值范围为或.【点睛】本题考查二次函数的值域及最值,不等式恒成立求参数取值范围,二次函数最值问题通常求出对称轴横坐标代入即可求得最值,由不等式恒成立求参数取值范围可转化为函数最值不等式问题,属于中等题.19、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间解题时应用分类讨论的思想,是中档题目;常见的讨论形式有:1、对二项式系数进行讨论;2、相对应的方程是否有根进行讨论;3、对应根的大小进行讨论.20、(1)证明见解析;(2).【解析】
(1)利用数列的递推公式证明出为非零常数,即可证明出数列是等比数列;(2)确定等比数列的首项和公比,求出数列的通项公式,即可求出.【详解】(1),,因此,数列是等比数列;(2)由于,所以,数列是以为首项,以为公比的等比数列,,因此,.【点睛】本题考查等比数列的证明,同时也考查了数列通项的求解,考查推理能力与计算能力,属于中等题.21、(Ⅰ);(Ⅱ)或.【解析】
(1)本题首先根据直线方程确定、两点坐标,然后根据线段为直径确定圆心与半径,即可得出圆的标准方程;(2)首先可根据题意得出圆心到直线的距离为,然后根据直线的斜率是否存在分别设出直线方程,最后根据圆心到直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售管理考试题及答案
- 2018-2022北京高中合格考生物汇编:细胞的生命历程
- 舞台棚架搭建方案(3篇)
- 小区车库提价方案(3篇)
- 经济房间改造方案(3篇)
- DB13T 5673-2023 公路自愈合沥青混合料薄层超薄层罩面施工技术规范
- 水泥市场广告方案(3篇)
- 工厂改造方案(3篇)
- 临时单位审计方案(3篇)
- 贵州民族大学《超高维数据分析》2023-2024学年第二学期期末试卷
- DB37T 2906-2019 运动场地合成材料面层 验收要求
- DB34∕T 451-2017 地理标志产品 舒城小兰花
- 《卓有成效的管理者》Word电子版电子版本
- 三生事业六大价值
- 锆石基本特征及地质应用
- 丝网除沫器小计算
- 制钵机的设计(机械CAD图纸)
- 学校财务管理制度
- 三年级下册美术课件-第15课色彩拼贴画|湘美版(共11张PPT)
- 水稻病虫统防统治工作总结
- 水在不同温度下的折射率、粘度和介电常数
评论
0/150
提交评论