版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山西省山西大学附中高一下数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.连续两次抛掷一枚质地均匀的硬币,出现正面向上与反面向上各一次的概率是(
)A. B. C. D.2.若扇形的面积为、半径为1,则扇形的圆心角为()A. B. C. D.3.某部门为了了解用电量y(单位:度)与气温x(单位:°C)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程y=-0.8x+a,则摄氏温度(°C)4611用电量度数1074A.12.6 B.13.2 C.11.8 D.12.84.下列函数中,既不是奇函数也不是偶函数的是()A. B. C. D.5.已知等比数列的公比为正数,且,则()A. B. C. D.6.表示不超过的最大整数,设函数,则函数的值域为()A. B. C. D.7.棱长都是1的三棱锥的表面积为()A. B. C. D.8.在中,三个内角成等差数列是的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件9.某单位共有老年人180人,中年人540人,青年人a人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则a和m的值不可以是下列四个选项中的哪组()A.a=810,m=17 B.a=450,m=14C.a=720,m=16 D.a=360,m=1210.直线与圆相交于M,N两点,若.则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的取值范围是_______;12.函数的定义域为___________.13.已知方程的四个根组成一个首项为的等差数列,则_____.14.已知函数在时取得最小值,则________.15.若6是-2和k的等比中项,则______.16.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2(Ⅰ)求A的大小;(Ⅱ)如果cosB=6318.已知.(Ⅰ)化简;(Ⅱ)已知,求的值.19.如图扇形的圆心角,半径为2,E为弧AB的中点C、D为弧AB上的动点,且,记,四边形ABCD的面积为.(1)求函数的表达式及定义域;(2)求的最大值及此时的值20.已知向量,,,.(Ⅰ)若四边形是平行四边形,求,的值;(Ⅱ)若为等腰直角三角形,且为直角,求,的值.21.如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为nmile,在A处看灯塔C在货轮的北偏西30°,距离为nmile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】由题意,连续两次抛掷一枚质地均匀的硬币,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情况,出现正面向上与反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2种,所以的概率为,故选C.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中熟练利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、B【解析】设扇形的圆心角为α,则∵扇形的面积为,半径为1,
∴故选B3、A【解析】
计算数据中心点,代入回归方程得到答案.【详解】x=4+6+113=7,代入回归方程y7=-0.8×7+a故答案选A【点睛】本题考查了回归方程,掌握回归方程过中心点是解题的关键.4、D【解析】
利用奇函数偶函数的判定方法逐一判断得解.【详解】A.函数的定义域为R,关于原点对称,,所以函数是偶函数;B.函数的定义域为,关于原点对称.,所以函数是奇函数;C.函数的定义域为R,关于原点对称,,所以函数是偶函数;D.函数的定义域为R,关于原点对称,,,所以函数既不是奇函数,也不是偶函数.故选D【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对该知识的理解掌握水平,属于基础题.5、D【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.6、D【解析】
由已知可证是奇函数,是互为相反数,对是否为正数分类讨论,即可求解.【详解】的定义域为,,,是奇函数,设,若是整数,则,若不是整数,则.的值域是.故选:D.【点睛】本题考查函数性质的应用,考查对新函数定义的理解,考查分类讨论思想,属于中档题.7、A【解析】
三棱锥的表面积为四个边长为1的等边三角形的面积和,故,故选A.8、B【解析】
根据充分条件和必要条件的定义结合等差数列的性质进行求解即可.【详解】在△ABC中,三个内角成等差数列,可能是A,C,B成等差数列,则A+B=2C,则C=60°,不一定满足反之若B=60°,则A+C=120°=2B,则A、B、C成等差数列,∴三个内角成等差数列是的必要非充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,考查了等差中项的应用,属于基础题.9、B【解析】
根据分层抽样的规律,计算a和m的关系为:8+a【详解】某单位共有老年人180人,中年人540人,青年人a人,样本中的中年人为6人,则老年人为:180×6540=22+6+代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.10、A【解析】
可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解【详解】如图所示,设弦中点为D,圆心C(3,2),弦心距,又,由勾股定理可得,答案选A【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。处理过程中,直线需化成一般式二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
本题首先可以根据向量的运算得出,然后等式两边同时平方并化简,得出,最后根据即可得出的取值范围.【详解】设向量与向量的夹角为,因为,所以,即,因为,所以,即,所以的取值范围是.【点睛】本题考查向量的运算以及向量的数量积的相关性质,向量的数量积公式,考查计算能力,是简单题.12、【解析】试题分析:由题设可得,解之得,故应填答案.考点:函数定义域的求法及运用.13、【解析】
把方程(x2﹣2x+m)(x2﹣2x+n)=0化为x2﹣2x+m=0,或x2﹣2x+n=0,设是第一个方程的根,代入方程即可求得m,则方程的另一个根可求;设另一个方程的根为s,t,(s≤t)根据韦达定理可知∴s+t=2根据等差中项的性质可知四个跟成的等差数列为,s,t,,进而根据数列的第一项和第四项求得公差,则s和t可求,进而根据韦达定理求得n,最后代入|m﹣n|即可.【详解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化为x2﹣2x+m=0①,或x2﹣2x+n=0②,设是方程①的根,则将代入方程①,可解得m,∴方程①的另一个根为.设方程②的另一个根为s,t,(s≤t)则由根与系数的关系知,s+t=2,st=n,又方程①的两根之和也是2,∴s+t由等差数列中的项的性质可知,此等差数列为,s,t,,公差为[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案为【点睛】本题主要考查了等差数列的性质.考查了学生创造性思维和解决问题的能力.14、【解析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式15、-18【解析】
根据等比中项的性质,列出等式可求得结果.【详解】由等比中项的性质可得,,得.故答案为:-18【点睛】本题主要考查等比中项的性质,属于基础题.16、262【解析】
根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【点睛】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)π3;(2)3【解析】试题分析:(1)先根据条件b2+c2=a2+bc结合余弦定理求出cosA试题解析:(1)因为b2所以cosA=又因为A∈(0,π),所以A=π(2)解:因为cosB=63所以sinB=由正弦定理asin得.考点:1.正弦定理与余弦定理;2.同角三角函数的基本关系18、(Ⅰ);(Ⅱ)-2。【解析】试题分析:(Ⅰ)5分(Ⅱ)10分考点:三角函数化简求值点评:三角函数化简主要考察的是诱导公式,如等,本题难度不大,需要学生熟记公式19、(1)(2)当时,取最大值.【解析】
(1)取OE与DC、AB的交点分别为M、N,在中,分别求出,,再利用梯形的面积公式求解即可;(2)令,则,,再求最值即可.【详解】解:(1),OE与DC、AB的交点分别为M、N,由已知可知,在中,.,,梯形ABCD的高,则.(2)设,则,,则,,则.,当时,,此时,即,,,,故.故的最大值为,此时.【点睛】本题考查了三角函数的应用,重点考查了运算能力,属中档题20、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)由得到x,y的方程组,解方程组即得x,y的值;(Ⅱ)由题得和,解方程组即得,的值.【详解】(Ⅰ),,,,,由,,;(Ⅱ),,为直角,则,,又,,再由,解得:或.【点睛】本题主要考查平面向量的数量积运算和模的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1)24;(2)8【解析】
(1)利用已知条件,利用正弦定理求得AD的长.(2)在△ADC中由余弦定理可求得CD,答案可得.【详解】(1)在△ABD中,由已知得∠ADB=60°,B=45°由正弦定理得(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- “模型+数据”驱动的TIG焊接电弧虚拟模型构建与电弧状态监测
- 二零二五年度社区便利店超市合作协议书
- 2025年度素食养生餐饮合伙协议
- 2025年度智能灯具研发、生产、安装与售后服务合同
- 二零二五年度盒饭配送服务与餐饮管理联合合同
- 2025年度汽车租赁公司车主与驾驶员合作协议书模板
- 二零二五年度荒山承包经营权转让与农业种植合同
- 2025年度融资财务顾问合同-智能制造项目融资版
- 2025年度贵重物品安全保管合作协议书
- 2025年度股东向公司提供借款的保密及限制协议
- 慈溪高一期末数学试卷
- 天津市武清区2024-2025学年八年级(上)期末物理试卷(含解析)
- 《徐霞客传正版》课件
- 江西硅博化工有限公司年产5000吨硅树脂项目环境影响评价
- 高端民用航空复材智能制造交付中心项目环评资料环境影响
- 量子医学成像学行业研究报告
- DB22T 3268-2021 粮食收储企业安全生产标准化评定规范
- 办事居间协议合同范例
- 正念减压疗法详解课件
- 华为HCSA-Presales-IT售前认证备考试题及答案
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
评论
0/150
提交评论