




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
荆门市重点中学2024届高一下数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为万元,则10时到11时的销售额为()A.万元 B.万元 C.万元 D.万元2.已知直线与直线垂直,则()A. B. C.或 D.或3.在直角梯形中,,为的中点,若,则A.1 B. C. D.4.已知,则下列4个角中与角终边相同的是()A. B. C. D.5.已知向量,,则()A. B. C. D.6.以分别表示等差数列的前项和,若,则的值为A.7 B. C. D.7.已知,且,则下列不等式正确的是()A. B. C. D.8.已知球面上有三点,如果,且球心到平面的距离为,则该球的体积为()A. B. C. D.9.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.10.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.12.数列的前项和为,,,则________.13.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.14.给出下列四个命题:①正切函数在定义域内是增函数;②若函数,则对任意的实数都有;③函数的最小正周期是;④与的图象相同.以上四个命题中正确的有_________(填写所有正确命题的序号)15.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.16.已知数列的通项公式,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设常数,函数.(1)若为偶函数,求的值;(2)若,求方程在区间上的解.18.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.19.已知正项等比数列满足,,数列满足.(1)求数列,的通项公式;(2)令,求数列的前项和;(3)若,且对所有的正整数都有成立,求的取值范围.20.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.21.已知是定义域为R的奇函数,当时,.Ⅰ求函数的单调递增区间;Ⅱ,函数零点的个数为,求函数的解析式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:先根据12时到14时的销售额为万元求出总的销售额,再求10时到11时的销售额.详解:设总的销售额为x,则.10时到11时的销售额的频率为1-0.1-0.4-0.25-0.1=0.15.所以10时到11时的销售额为.故答案为C.点睛:(1)本题主要考查频率分布直方图求概率、频数和总数,意在考查学生对这些基础知识的掌握水平.(2)在频率分布直方图中,所有小矩形的面积和为1,频率=.2、D【解析】
由垂直,可得,即可求出的值.【详解】直线与直线垂直,,解得或.故选D.【点睛】对于直线:和直线:,①;②.3、B【解析】
连接,因为为中点,得到,可求出,从而可得出结果.【详解】连接,因为为中点,,.故选B【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.4、C【解析】
先写出与角终边相同的角的集合,再给k取值得解.【详解】由题得与角终边相同的集合为,当k=6时,.所以与角终边相同的角为.故选C【点睛】本题主要考查终边相同的角的求法,意在考查学生对该知识的理解掌握水平.5、D【解析】
根据平面向量的数量积,计算模长即可.【详解】因为向量,,则,,故选:D.【点睛】本题考查了平面向量的数量积与模长公式的应用问题,是基础题.6、B【解析】
根据等差数列前n项和的性质,当n为奇数时,,即可把转化为求解.【详解】因为数列是等差数列,所以,故,选B.【点睛】本题主要考查了等差数列前n项和的性质,属于中档题.7、B【解析】
通过反例可排除;根据的单调性可知正确.【详解】当,时,,,则错误;当,时,,则错误;由单调递增可知,当时,,则正确本题正确选项:【点睛】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题.8、B【解析】
的外接圆半径为球半径球的体积为,故选B.9、B【解析】
根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为故答案为:B【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.10、C【解析】
由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【点睛】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题12、18【解析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.13、.【解析】
由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为,所以该组数据的方差是.【点睛】本题主要考查方差的计算公式,属于基础题.14、②③④【解析】
①利用反例证明命题错误;②先判断为其中一条对称轴;③通过恒等变换化成;④对两个解析式进行变形,得到定义域和对应关系均一样.【详解】对①,当,显然,但,所以,不符合增函数的定义,故①错;对②,当时,,所以为的一条对称轴,当取,取时,显然两个数关于直线对称,所以,即成立,故②对;对③,,,故③对;对④,因为,,两个函数的定义域都是,解析式均为,所以函数图象相同,故④对.综上所述,故填:②③④.【点睛】本题对三角函数的定义域、值域、单调性、对称性、周期性等知识进行综合考查,求解过程中要注意数形结合思想的应用.15、.【解析】
根据等积法可得∴16、【解析】
本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为1.【点睛】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或或.【解析】
(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【详解】(1)∵,∴,∵为偶函数,∴,∴,∴,∴;(2)∵,∴,∴,∴,∵,∴,∴,∴,或,∴,或,∵,∴或或【点睛】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.18、(1),;(2)【解析】
(1)通过求解数列的通项公式,从而可以求出首项与公比,即可得到的通项公式;(2)化简,利用错位相减法求解数列的和即可.【详解】(1)∴,∴,∵,∴,∴,,∵,,∴,从而,∵数列为等比数列∴数列的公比为,从而;(2)∵,,∴∴∴,∴.【点睛】本题考查已知求的通项公式以及数列求和,考查计算能力.在通过求的通项公式时,不要忽略时的情况.19、(1),;(2);(3).【解析】
(1)设等比数列的公比为,则,根据条件可求出的值,利用等比数列的通项公式可求出,再由对数的运算可求出数列的通项公式;(2)求出数列的通项公式,然后利用错位相减法求出数列的前项和为;(3)利用数列单调性的定义求出数列最大项的值为,由题意得出关于的不等式对任意的恒成立,然后利用参变量分离法得出,并利用基本不等式求出在时的最小值,即可得出实数的取值范围.【详解】(1)设等比数列的公比为,则,由可得,,,即,,解得,.;(2)由(1)可得,,可得,上式下式,得,因此,;(3),,,,即,则有.所以,数列是单调递减数列,则数列的最大项为.由题意可知,关于的不等式对任意的恒成立,.由基本不等式可得,当且仅当时,等号成立,则在时的最小值为,,因此,实数的取值范围是.【点睛】本题考查等比数列通项公式的求解,考查错位相减求和法以及数列不等式恒成立问题,涉及数列最大项的问题,一般利用数列单调性的定义来求解,考查分析问题和解决问题的能力,属于中等题.20、(1);(2)存在.【解析】
(1)由题得到的距离为,即得,解方程即得解;(2)设,,存在点满足题意,即,把韦达定理代入方程化简即得解.【详解】(1)因为圆,所以圆心坐标为,半径为2,因为,所以到的距离为,由点到直线的距离公式可得:,解得.(2)设,,则得,因为,所以,,设存在点满足题意,即,所以,因为,所以,所以,解得.所以存在点符合题意.【点睛】本题主要考查直线和圆的位置关系,考查直线和圆的探究性问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.21、Ⅰ见解析;(Ⅱ)【解析】
Ⅰ利用函数的奇偶性,利用对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务会计求职信
- 部编版二年级上册第五单元《坐井观天》教案
- 建筑施工特种作业-建筑起重机械司机(施工升降机)真题库-3
- 山东中考美术题目及答案
- 散装啤酒测评题目及答案
- 2023-2024学年河北省邯郸市高二下学期期末考试数学试题(解析版)
- 新疆康义化学股份有限公司2万吨-年水合肼及配套装置建设项目环评报告
- 佛山教师寝室管理制度
- 作业企业安全管理制度
- 作业现场粉尘管理制度
- 护理安全用药制度
- 中国药妆行业发展现状、药妆市场政策解读及未来发展趋势分析图
- 毕业离校学生证遗失证明
- 《汽轮机原理》第03章1课件
- 家族成员关系辈分排列树状图含女眷
- 围堰施工监理实施细则
- 新生血管性青光眼课件
- YY∕T 1797-2021 内窥镜手术器械 腔镜切割吻合器及组件
- 智慧停车技术方案
- 土地整理质量评定表
- 肠内肠外营养制剂及特点
评论
0/150
提交评论