版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试卷PAGEPAGE1陕西省西安市鄂邑区2022-2023学年高一下学期期末检测数学试题考生注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22题,满分150分,考试时间120分钟,请将〖答案〗填写在答题纸相应的位置.第Ⅰ卷(选择题共60分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.为虚数单位,已知复数是纯虚数,则等于()A. B. C. D.〖答案〗C〖解析〗复数是纯虚数,所以,得.故选:C.2.已知向量,的位置如图所示,若图中每个小正方形的边长均为1,则()A. B. C.4 D.〖答案〗D〖解析〗如图所示建立平面直角坐标系,则,,,所以.故选:D.3.下列说法不正确的是()A.改变样本数据中的一个数据,平均数和中位数都会发生改变B.若数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则平均数大于中位数C.频率分布直方图中,中位数左边和右边的直方图的面积相等D.数据、、、、、的众数为、〖答案〗A〖解析〗对于A选项,改变样本中的一个数据,则其平均数会改变,但中位数不一定改变,如样本数据为、、、,则其平均数为,在其中一个数据上加上一个非零实数,则平均数变为,即改变样本中的一个数据,则其平均数会改变,又如,数据、、,将变为,即为数据、、,变化前后中位数都为,数据、、,将变为,即为数据、、,变化前的中位数为,变化后的中位数为,A错;对于B选项,根据频率分布直方图可知,若频率分布直方图单峰不对称在右边“拖尾”,则平均数变大,中位数变小,故平均数大于中位数,B对;对于C选项,根据中位数的定义可知,频率分布直方图中,中位数左边和右边的直方图的面积相等,C对;对于D选项,由众数的定义可知,数据、、、、、的众数为、,D对.故选:A.4.某人打靶时连续射击两次,下列事件与事件“至多一次中靶”互为对立是()A.至少一次中靶 B.两次都中靶C.只有一次中靶 D.两次都没有中靶〖答案〗B〖解析〗由已知条件得∵事件“至多一次中靶”包含事件两次都未中靶和两次只有一次中靶,∴事件“至多一次中靶”的对立事件为“两次都中靶”,故选:.5.某企业对目前销售的A,B,C,D四种产品进行改造升级,经过改造升级后,企业营收实现翻番,现统计了该企业升级前后四种产品的营收占比,得到如下饼图:下列说法正确的是()A.产品升级后,产品A的营收是升级前的2倍B.产品升级后,产品B的营收不变C.产品升级后,产品C的营收减少D.产品升级后,产品B,D的营收的总和占总营收的比例不变〖答案〗D〖解析〗不妨设产品升级升级前企业营收为1,则升级后企业营收为2,故产品A升级前营收为,升级后营收为,即产品升级后,产品A的营收是升级前的4倍,A错误;产品B升级前营收为,升级后营收为,即产品升级后,产品A的营收是升级前的2倍,B错误;产品C升级前营收为,升级后营收为,即产品升级后,产品A的营收是升级前的倍,营收增加,C错误;产品升级前,产品B,D的营收的总和占总营收的,产品升级后,产品B,D的营收的总和也占总营收的,故产品升级后,产品B,D的营收的总和占总营收的比例不变,D正确,故选:D6.设、为两个互斥事件,且,,则下列各式错误的是()A. B.C. D.〖答案〗B〖解析〗对A,B,、为两个互斥事件,且,,,即,故A正确,B错误;对C,为必然事件,即,故C正确;对D,、为两个互斥事件,.故选:B.7.总体由编号01,02,…,29,3030个个体组成.利用下面的随机数表选取6个个体,选取方法是从如下随机数表的第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()第1行78166232080262426252536997280198第2行32049234493582003623486969387481A.19 B.25 C.26 D.24〖答案〗B〖解析〗依题意,按照要求选取的个体编号依次为:23,20,26,24,25,19,所以选出来的第5个个体的编号为25.故选:B8.若直线不平行于平面,且,则()A.内的所有直线与异面 B.内不存在与平行的直线C.内存在唯一的直线与平行 D.内的直线与都相交〖答案〗B〖解析〗直线l不平行于平面α,且l⊄α,则l与α相交l与α内的直线可能相交,也可能异面,但不可能平行故A,C,D错误故选B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分.)9.设向量,,则下列说法正确的是()A. B.C. D.在上的投影向量为〖答案〗ACD〖解析〗由题意可知,,故,A正确;因为,故不平行,B错误;因为,故,C正确;由于,,故在上的投影向量为,D正确,故选:ACD10.为了加深师生对党史的了解,激发广大师生知史爱党、知史爱国的热情,某校举办了“学党史、育文化”暨“喜迎党的二十大”党史知识竞赛,并将1000名师生的竞赛成绩(满分100分,成绩取整数)整理成如图所示的频率分布直方图,则下列说法正确的是()A.a的值为0.005 B.估计这组数据的众数为75C.估计成绩不低于90分的有50人 D.估计这组数据的第85百分位数为86〖答案〗ABCD〖解析〗对于A,根据频率分布直方图可得,A正确;对于B,由于最高小矩形得底边中点处的值为75,故估计这组数据的众数为75,B正确;对于C,估计成绩不低于90分的有(人),C正确;对于D,由于,,故设这组数据的第85百分位数为x,则,故,D正确,故选:ABCD11.在不透明的甲、乙两个盒子中分别装有除标号外完全相同的小球,甲盒中有4个小球,标号分别为1,2,3,4,乙盒中有3个小球,标号分别为5,6,7.现从甲、乙两个盒里分别随机抽取一个小球,记事件“取到标号为2的小球”,事件“取到标号为6的小球”,事件“两个小球标号都是奇数”,事件“两个小球标号之和大于9”,则下列说法正确的是()A.事件C与事件D互斥 B.事件A与事件B相互独立C. D.〖答案〗BCD〖解析〗对于A,事件C与事件D都包含事件,故事件C与事件D不互斥,A错误;对于B,由于从甲、乙两个盒里分别随机抽取一个小球,共有种可能,故,而,即有,故事件A与事件B相互独立,B正确;由B的分析可知,,C正确;对于D,两个小球标号都是奇数的情况有种,故,D正确,故选:BCD12.如图,在正方体中,点在线段上运动,有下列判断,其中正确的是()A.平面平面B.平面C.异面直线与所成角的取值范围是D.三棱锥的体积不变〖答案〗ABD〖解析〗对于A,连接,如图,因为在正方体中,平面,又平面,所以,因为在正方形中,又与为平面内的两条相交直线,所以平面,因为平面,所以,同理可得,因为与为平面内两条相交直线,可得平面,又平面,从而平面平面,故A正确;.对于B,连接,,如图,因为,,所以四边形是平行四边形,所以,又平面,平面,所以平面,同理平面,又、为平面内两条相交直线,所以平面平面,因为平面,所以平面,故B正确;对于C,因为,所以与所成角即为与所成的角,因为,所以为等边三角形,当与线段的两端点重合时,与所成角取得最小值;当与线段的中点重合时,与所成角取得最大值;所以与所成角的范围是,故C错误;对于D,由选项B得平面,故上任意一点到平面的距离均相等,即点到面平面的距离不变,不妨设为,则,所以三棱锥的体积不变,故D正确.故选:ABD.第Ⅱ卷(非选择题共90分)三、填空题(本大题共4个小题,每小题5分,满分20分)13.在某次测试中得到的样本数据如下:68,83,81,81,86,90,88.若样本数据恰好是样本数据每个都减5后得到的数据,则样本的下列数字特征对应相同的是______(填序号).①平均数②标准差③众数④中位数⑤极差〖答案〗②⑤〖解析〗由题意知样本的数据为:,所以样本数据的极差为:,样本数据的极差为:,故⑤正确;样本数据的众数为:,样本数据的众数为:,故③不正确;样本数据的平均数为:,样本数据的平均数为:,故①不正确;设样本数据为:,标准差为,则样本数据为:,由数据的标准差性质可得:,故②正确;对样本从小到大排序:,故中位数为:,对样本从小到大排序:,故中位数为:,所以④不正确,故〖答案〗为:②⑤.14.在复数范围内方程的根______.〖答案〗i或〖解析〗,由,故复数范围内方程的根为i或.故〖答案〗为:i或15.若一个圆锥的底面面积为,其侧面展开图是圆心角为的扇形,则该圆锥的表面积为______.〖答案〗〖解析〗设圆锥的底面半径为,则,解得,所以圆锥的底面周长为,故侧面展开图,即扇形的弧长为,又侧面展开图是圆心角为的扇形,所以扇形的半径,故扇形面积为,故圆锥的表面积为.故〖答案〗为:16.、两个元件组成一个串联电路,每个元件可能正常或失效.设事件“元件正常”,“元件正常”,用、分别表示、两个元件的状态,用表示这个串联电路的状态.以表示元件正常,表示元件失效.下列说法正确的是______.①样本空间;②事件;③事件“电路是断路”可以用(或)表示;④事件“电路是通路”可以用(或)表示,共包含个样本点.〖答案〗①②〖解析〗对于①,样本空间,①对;对于②,事件包含两种情况,元件不正常且元件正常,元件正常且元件正常,故事件,②对;对于③,“电路是断路”,说明元件和元件至少有一个不正常,即事件“电路是断路”可以用(或)表示,③错;对于④,“电路是通路”,说明两个元件都正常,所以,事件“电路是通路”可以用(或)表示,④错.故〖答案〗为:①②.四、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.已知复数z满足.(1)求z;(2)判定在复平面内对应点所在的象限.解:(1)由得,所以.(2),所以在复平面内对应点在第一象限.18.已知在中,点是边上靠近点的四等分点,点为中点,设与相交于点.(1)请用、表示向量;(2)设和的夹角为,若,且,求证:.(1)解:.(2)证明:,,.19.一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.(1)从中同时摸出两个球,求两球颜色恰好相同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.解:(1)设黑色球记为、,白色球记为,摸出两球颜色恰好相同,有,即两个黑球或两个白球,共有4种可能情况.基本事件有,共有10种情况,故所求事件概率.(2)有放回地摸两次,两球颜色不同,即“先黑后白”或“先白后黑”.故基本事件包括:,,,,共有25种情况,颜色不同包括:,共12种情况,故所求事件的概率.20.在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.解:(1)由余弦定理可得:,则,,.(2)由三角形面积公式可得,则.21.某市为了了解人们对“中国梦”的伟大构想的认知程度,针对该市不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(95分及以上为认知程度高),结果认知程度高的有m人,按年龄分为5组,其中第一组为,第二组为,第三组为,第四组为,第五组为,得到如图所示的频率分布直方图,已知第一组有10人.(1)根据频率分布直方图,估计这m人的平均年龄.(2)现从以上各组中用分层随机抽样的方法抽取20人,担任本市的“中国梦”宣传使者.若第四组宣传志愿者年龄的平均数与方差为37和,第五组宣传志愿者年龄的平均数与方差为43和1,据此估计这m人中35~45所有人的年龄的方差.解:(1)这m人的平均年龄为,则(岁).(2)由题意得,这五组的频率之比为,故第四组应抽取人,第五组应抽取人设第四组、第五组的宣传志愿者年龄的平均数分别为,,方差分别为,,则,,方差分别,,设第四组和第五组所有宣传志愿者的年龄平均数为,方差为,则,,据此估计这m人中年龄在35~45岁的所有人的年龄的方差约为10.22.如图,中,,四边形是边长为的正方形,平面,若、分别是、的中点.(1)求证:平面;(2)求证:面;(3)求和面所成角的大小.(1)证明:连接交于点,因为四边形为正方形,,则是的中点.又因为是的中点,所以,又因为平面,平面,所以平面.(2)证明:在中,设,则,因为,所以,,因为平面,平面,所以,,因为,、平面,所以,平面.(3)解:因为平面,所以,为和面所成的角,在中,,,所以,,因为为锐角,则,即和面所成角为.陕西省西安市鄂邑区2022-2023学年高一下学期期末检测数学试题考生注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22题,满分150分,考试时间120分钟,请将〖答案〗填写在答题纸相应的位置.第Ⅰ卷(选择题共60分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.为虚数单位,已知复数是纯虚数,则等于()A. B. C. D.〖答案〗C〖解析〗复数是纯虚数,所以,得.故选:C.2.已知向量,的位置如图所示,若图中每个小正方形的边长均为1,则()A. B. C.4 D.〖答案〗D〖解析〗如图所示建立平面直角坐标系,则,,,所以.故选:D.3.下列说法不正确的是()A.改变样本数据中的一个数据,平均数和中位数都会发生改变B.若数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则平均数大于中位数C.频率分布直方图中,中位数左边和右边的直方图的面积相等D.数据、、、、、的众数为、〖答案〗A〖解析〗对于A选项,改变样本中的一个数据,则其平均数会改变,但中位数不一定改变,如样本数据为、、、,则其平均数为,在其中一个数据上加上一个非零实数,则平均数变为,即改变样本中的一个数据,则其平均数会改变,又如,数据、、,将变为,即为数据、、,变化前后中位数都为,数据、、,将变为,即为数据、、,变化前的中位数为,变化后的中位数为,A错;对于B选项,根据频率分布直方图可知,若频率分布直方图单峰不对称在右边“拖尾”,则平均数变大,中位数变小,故平均数大于中位数,B对;对于C选项,根据中位数的定义可知,频率分布直方图中,中位数左边和右边的直方图的面积相等,C对;对于D选项,由众数的定义可知,数据、、、、、的众数为、,D对.故选:A.4.某人打靶时连续射击两次,下列事件与事件“至多一次中靶”互为对立是()A.至少一次中靶 B.两次都中靶C.只有一次中靶 D.两次都没有中靶〖答案〗B〖解析〗由已知条件得∵事件“至多一次中靶”包含事件两次都未中靶和两次只有一次中靶,∴事件“至多一次中靶”的对立事件为“两次都中靶”,故选:.5.某企业对目前销售的A,B,C,D四种产品进行改造升级,经过改造升级后,企业营收实现翻番,现统计了该企业升级前后四种产品的营收占比,得到如下饼图:下列说法正确的是()A.产品升级后,产品A的营收是升级前的2倍B.产品升级后,产品B的营收不变C.产品升级后,产品C的营收减少D.产品升级后,产品B,D的营收的总和占总营收的比例不变〖答案〗D〖解析〗不妨设产品升级升级前企业营收为1,则升级后企业营收为2,故产品A升级前营收为,升级后营收为,即产品升级后,产品A的营收是升级前的4倍,A错误;产品B升级前营收为,升级后营收为,即产品升级后,产品A的营收是升级前的2倍,B错误;产品C升级前营收为,升级后营收为,即产品升级后,产品A的营收是升级前的倍,营收增加,C错误;产品升级前,产品B,D的营收的总和占总营收的,产品升级后,产品B,D的营收的总和也占总营收的,故产品升级后,产品B,D的营收的总和占总营收的比例不变,D正确,故选:D6.设、为两个互斥事件,且,,则下列各式错误的是()A. B.C. D.〖答案〗B〖解析〗对A,B,、为两个互斥事件,且,,,即,故A正确,B错误;对C,为必然事件,即,故C正确;对D,、为两个互斥事件,.故选:B.7.总体由编号01,02,…,29,3030个个体组成.利用下面的随机数表选取6个个体,选取方法是从如下随机数表的第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()第1行78166232080262426252536997280198第2行32049234493582003623486969387481A.19 B.25 C.26 D.24〖答案〗B〖解析〗依题意,按照要求选取的个体编号依次为:23,20,26,24,25,19,所以选出来的第5个个体的编号为25.故选:B8.若直线不平行于平面,且,则()A.内的所有直线与异面 B.内不存在与平行的直线C.内存在唯一的直线与平行 D.内的直线与都相交〖答案〗B〖解析〗直线l不平行于平面α,且l⊄α,则l与α相交l与α内的直线可能相交,也可能异面,但不可能平行故A,C,D错误故选B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分.)9.设向量,,则下列说法正确的是()A. B.C. D.在上的投影向量为〖答案〗ACD〖解析〗由题意可知,,故,A正确;因为,故不平行,B错误;因为,故,C正确;由于,,故在上的投影向量为,D正确,故选:ACD10.为了加深师生对党史的了解,激发广大师生知史爱党、知史爱国的热情,某校举办了“学党史、育文化”暨“喜迎党的二十大”党史知识竞赛,并将1000名师生的竞赛成绩(满分100分,成绩取整数)整理成如图所示的频率分布直方图,则下列说法正确的是()A.a的值为0.005 B.估计这组数据的众数为75C.估计成绩不低于90分的有50人 D.估计这组数据的第85百分位数为86〖答案〗ABCD〖解析〗对于A,根据频率分布直方图可得,A正确;对于B,由于最高小矩形得底边中点处的值为75,故估计这组数据的众数为75,B正确;对于C,估计成绩不低于90分的有(人),C正确;对于D,由于,,故设这组数据的第85百分位数为x,则,故,D正确,故选:ABCD11.在不透明的甲、乙两个盒子中分别装有除标号外完全相同的小球,甲盒中有4个小球,标号分别为1,2,3,4,乙盒中有3个小球,标号分别为5,6,7.现从甲、乙两个盒里分别随机抽取一个小球,记事件“取到标号为2的小球”,事件“取到标号为6的小球”,事件“两个小球标号都是奇数”,事件“两个小球标号之和大于9”,则下列说法正确的是()A.事件C与事件D互斥 B.事件A与事件B相互独立C. D.〖答案〗BCD〖解析〗对于A,事件C与事件D都包含事件,故事件C与事件D不互斥,A错误;对于B,由于从甲、乙两个盒里分别随机抽取一个小球,共有种可能,故,而,即有,故事件A与事件B相互独立,B正确;由B的分析可知,,C正确;对于D,两个小球标号都是奇数的情况有种,故,D正确,故选:BCD12.如图,在正方体中,点在线段上运动,有下列判断,其中正确的是()A.平面平面B.平面C.异面直线与所成角的取值范围是D.三棱锥的体积不变〖答案〗ABD〖解析〗对于A,连接,如图,因为在正方体中,平面,又平面,所以,因为在正方形中,又与为平面内的两条相交直线,所以平面,因为平面,所以,同理可得,因为与为平面内两条相交直线,可得平面,又平面,从而平面平面,故A正确;.对于B,连接,,如图,因为,,所以四边形是平行四边形,所以,又平面,平面,所以平面,同理平面,又、为平面内两条相交直线,所以平面平面,因为平面,所以平面,故B正确;对于C,因为,所以与所成角即为与所成的角,因为,所以为等边三角形,当与线段的两端点重合时,与所成角取得最小值;当与线段的中点重合时,与所成角取得最大值;所以与所成角的范围是,故C错误;对于D,由选项B得平面,故上任意一点到平面的距离均相等,即点到面平面的距离不变,不妨设为,则,所以三棱锥的体积不变,故D正确.故选:ABD.第Ⅱ卷(非选择题共90分)三、填空题(本大题共4个小题,每小题5分,满分20分)13.在某次测试中得到的样本数据如下:68,83,81,81,86,90,88.若样本数据恰好是样本数据每个都减5后得到的数据,则样本的下列数字特征对应相同的是______(填序号).①平均数②标准差③众数④中位数⑤极差〖答案〗②⑤〖解析〗由题意知样本的数据为:,所以样本数据的极差为:,样本数据的极差为:,故⑤正确;样本数据的众数为:,样本数据的众数为:,故③不正确;样本数据的平均数为:,样本数据的平均数为:,故①不正确;设样本数据为:,标准差为,则样本数据为:,由数据的标准差性质可得:,故②正确;对样本从小到大排序:,故中位数为:,对样本从小到大排序:,故中位数为:,所以④不正确,故〖答案〗为:②⑤.14.在复数范围内方程的根______.〖答案〗i或〖解析〗,由,故复数范围内方程的根为i或.故〖答案〗为:i或15.若一个圆锥的底面面积为,其侧面展开图是圆心角为的扇形,则该圆锥的表面积为______.〖答案〗〖解析〗设圆锥的底面半径为,则,解得,所以圆锥的底面周长为,故侧面展开图,即扇形的弧长为,又侧面展开图是圆心角为的扇形,所以扇形的半径,故扇形面积为,故圆锥的表面积为.故〖答案〗为:16.、两个元件组成一个串联电路,每个元件可能正常或失效.设事件“元件正常”,“元件正常”,用、分别表示、两个元件的状态,用表示这个串联电路的状态.以表示元件正常,表示元件失效.下列说法正确的是______.①样本空间;②事件;③事件“电路是断路”可以用(或)表示;④事件“电路是通路”可以用(或)表示,共包含个样本点.〖答案〗①②〖解析〗对于①,样本空间,①对;对于②,事件包含两种情况,元件不正常且元件正常,元件正常且元件正常,故事件,②对;对于③,“电路是断路”,说明元件和元件至少有一个不正常,即事件“电路是断路”可以用(或)表示,③错;对于④,“电路是通路”,说明两个元件都正常,所以,事件“电路是通路”可以用(或)表示,④错.故〖答案〗为:①②.四、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.已知复数z满足.(1)求z;(2)判定在复平面内对应点所在的象限.解:(1)由得,所以.(2),所以在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年甘肃省甘南自治州公开招聘警务辅助人员笔试自考题2卷含答案
- 2022年四川省雅安市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年浙江省湖州市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 晨会主持发言稿
- 广西梧州市(2024年-2025年小学六年级语文)统编版随堂测试(下学期)试卷及答案
- 2024年姿态控制推力器、推进剂贮箱项目资金需求报告代可行性研究报告
- 《应收款项新》课件
- 《称赞教学》课件
- 2025年毛纺织、染整加工产品项目立项申请报告模范
- 2025年水乳型涂料项目提案报告模范
- 消防疏散演练宣传
- 2023-2024学年广东省广州市越秀区九年级(上)期末语文试卷
- 五年级数学下册 课前预习单(人教版)
- 2024-2030年中国石油压裂支撑剂行业供需现状及投资可行性分析报告
- 医疗企业未来三年战略规划
- 急诊科运用PDCA循环降低急诊危重患者院内转运风险品管圈QCC专案结题
- 2024年统编版新教材语文小学一年级上册全册单元测试题及答案(共8单元)
- 四川雅安文化旅游集团有限责任公司招聘考试试卷及答案
- 医务人员职业暴露预防及处理课件(完整版)
- DB11T 1470-2022 钢筋套筒灌浆连接技术规程
- 中考数学真题试题(含解析)
评论
0/150
提交评论