



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
案例辨析——数学概念教学的有效途径江苏省丰县中学江远忠1.在辨析中比拟,让概念的导入和“生成”水到渠成从概念的同化来说,要想掌握新概念,学生必须掌握那些作为定义项的概念,从新概念的形成来说,学生必须具有刺激模式方面的有关知识和经验,否那么,就不可能从中抽象出本质的属性。因此,教师在教学中,为了使学生易于接受和掌握数学概念,应先创设学习新概念的情境,想方设法唤起学生原有认知结构中的有关知识和经验,让概念的导入符合事物开展的规律,让学生在活动中思考、感悟和体验数学知识的萌芽以及发生、开展的全过程,以领悟数学思想方法的真谛,丰富学生的认知结构。[案例1]“向量的数量积”这一定义式,往往学生在学了一段时间之后仍迷惑,数量积怎么要定义成这样一个式子?以致把数量积与算术中的乘法相混淆,出现“向量中的乘法和原来学过的乘法不一样了!”的错误认识。为此,笔者在给出这个概念时,采取以下思路:先给出学生初中已经熟悉的物理中的情景:一物体在力F的作用下发生位移S,那么做功为:,〔其中是F与S的夹角〕。在向量中,也有极其类似的情形:向量a、b及其夹角〔如右图〕,你能给出什么运算结果?学生自然而然地答复表达式:|a||b|!那好我们就把这个运算表达式记作ab,读作“向量a与b的数量积”。然后比照“功”的数量特征给出“数量积”的数量特征。在这里,物理问题情境的创设起到触发学生思维的“信息源”的作用,学生通过比拟,发现“ab”这种运算定义式合情合理,一个新结构式产生了!然后就像用“W”表示“功”一样,我们用“ab”表示“|a||b|”。这种过程使得新概念在原有知识根底上自然得到同化和顺应。当然要使概念的导入和“生成”水到渠成,教师必须尽可能为学生选择一个好的素材、创设一个好的数学情景。要能有效激发学生的求知欲和创新精神,促使他们积极主动地去发现、探索,而不是一个新概念的简单实例化的再现。[案例2]新教材〔苏教版〕“交集、并集”这一概念的教学,教材上安排的教学情境是:用Venn图分别表示以下各组中的三个集合:〔1〕,,〔2〕,,〔3〕〔略〕上述集合中,A、B、C具有怎样的关系?编者在这里的思路非常清楚,借助实例向学生直观展示交集的概念。但由于太直观简单,学生根本不需要探索、抽象、概括等思维活动就能轻松获取新知识,学生投入的积极性并不会很高,而且对于难点〔并集的定义〕又没有提供背景材料。于是笔者在组织教学时,选择教材的一个例题:“学校先举办排球赛,某班45名同学中有12名同学参赛,后来又举办了一次田径赛,这个班有20名同学参赛。两项都参赛的有6名同学,这个班共有多少名同学没有参加过比赛?”作为引入问题让学生讨论,通过画图及演算,学生能得出19名的答案。然后引导学生对求解过程进行反省,结合Venn图,学生便能自己抽象概括出交集与并集的定义。尤其是对于并集定义中“或”的意义〔本节课的难点〕有了深入的理解,即含有三层意义①x∈A但xB;②x∈A且x∈B;③x∈B但xA。这样安排,使学生动手动脑的同时,自然感悟出新的概念。2.在辨析中调整,准确把握概念的“内涵”和“外延”郑毓信教授曾经这样说过:“现代教学思想的一个重要内容,即是认为学生的错误不可能单纯依靠下面的示范和反复的练习得到纠正,而必须是一个‘自我否认’的过程”。在这个过程中,学生经历着好奇、惊喜、迷惑、困顿,最后茅塞顿开,使得在教学过程的种种细节处能够起到及时地开发,巧妙地利用,智慧地引领,同时唤醒学生的悟性和灵感,以到达对数学概念真正的理解。[案例3]在“概率”一节中,为帮助学生区别古典概型与几何概型的概念,我提出了以下问题:连续掷两次骰子,以出现的点数作为点中的,问点落在圆内的概率是多少?这样的问题,学生会脱口而出——几何概型问题!算一下圆面积与正方形面积的比不就清楚了吗。仔细推敲,却另有情形,发现是在可能的36个点中,出现点(1,1),(1,2),(1,3),(2,1),(2,0),(2,3),(3,1),(3,2)的可能性,属于典型的“古典概型”问题,于是。在这里几何概型“有形无实”,不是对学生的概念理解出现偏差的“当头棒喝”吗?!“抽象”和“严谨”是数学概念的重要特征,而表达数学概念的语言又是经过高度抽象、精心提炼,数学概念教学中我们经常要求学生“理解”,要求学生仔细观察、判别某一细微之处〔如某一句的意思、某一关键词的意思〕,甚至逐字逐句加以推敲、分析,但仅仅限于字面的表述显然是不够的,学生往往对这样的语言和名词仍不理解或理解不到位。在教学中,要结合具体的事例诠释概念的内涵与外延。这里既可以以“形似而神非”的个案来校正;也可以巧设“案例组”。在对“案例组”的辨析中,通过归纳、抽象、概括、提炼,使学生理解一类事物的共同本质属性,明确概念的内涵和外延。当然,这样的“案例组”往往可以通过具有该本质属性的事物或不具有该本质的事物混合组成。[案例4]椭圆的定义式,学生常常笼统地记为:,为帮助学生准确把握定义式的内涵,教学时可以设计以下简单问题组,让学生讨论:平面内一动点P到两定点,的距离之和为2,那么P点的轨迹为:A椭圆B两条射线C线段D不存在平面内一动点P到两定点,的距离之和为4,那么P点的轨迹为:A椭圆B两条射线C线段D直线。平面内一动点P到两定点,的距离之和为6,那么P点的轨迹为:A椭圆B两条射线C线段D直线。结合以上问题通过分析容易得到:①.当2a<2c时,轨迹不存在;②.当2a=2c时,轨迹为一条线段;③.当2a>2c时,轨迹为椭圆。这样就有效加深了学生对椭圆概念中"a>c"这一条件的理解。当然,设置的“案例组”要尽可能让学生有思考的空间,只有设置的问题让学生“跳一跳才能摸得到桃子”,才能更好地引起学生的认知冲突或惊讶等心理反响.,课堂教学效益才能最大化。[案例5]函数周期性及其最小正周期是学生较难理解的一个数学概念,在学生了解其概念之后,给出以下问题,让学生展开讨论:①函数是周期函数吗?;呢?;呢?②函数是周期函数吗?假设是,最小正周期是多少?③函数仍是周期函数吗?有无正周期?④对函数,对都有,那么的最小值为:通过上述问题的研究,帮助学生弄清以下问题:①周期函数定义域的结构特征②最小正周期的存在状况③周期函数函数值的分布规律④周期函数的图像特征。在此根底上,学生真正弄清周期函数、最小正周期的概念,不仅加深了对关键字词、式的理解,学生认知结构上也从“了解”上升为“理解”的层面。因此,概念教学要求教师要把教材当作原材料,通过精心的加工和重组,以活鲜的素材形式显现在学生面前,让学生积极地参与教学过程,并组织、监控、调整自己的思维活动。这样的教学,表达了教学过程不是由教师向学生灌输知识,将知识单向地传授给学生,而是学生学习的指导者、引导者,使教学活动真正成为学生学习的活动。3.在应用中辨析,使概念学习得到“升华”数学概念的教学如果仅仅停留在记忆的层面上肯定不够,还必须上升到抽象层面去理解应用,使概念的形成由“过程”向“抽象”再到“具体”的转换,在应用中将抽象的定义转换为具体的形态,暴露数学的实质内涵,以及朴素的数学思考过程。[案例6]为使学生对函数单调性、奇偶性能深刻理解并应用,设计以下问题:设x、y为实数,且满足关系式,问?学生先是通过两式相加,进而因式分解给出结果,但达不到设计目的。于是我把两式改为:,问?在原解法行不通的情况下,引导学生通过对题设条件的观察,构造函数,显然是奇函数,且在上单调递增,又由条件知:,所以。在这里,能否构造出函数式,并及时把握准函数的奇偶性和单调性,合理使用其性质,是检验学生思维水平的标志。由题设寻找切入点,跨越难点,是实现由知识向能力转化的关键,在对该题不同解法的比拟、辨析中,到达训练学生思维的目的。[案例7]在一次“古典概型”讨论课上,我向学生提出如下问题:“某信鸽训练场向甲、乙两林区放飞4只鸽子,那么甲林区刚好有一只鸽子的概率是多少?”甲林区鸽子数乙林区鸽子数0413223140一学生当即作如下分析:甲乙两林区的鸽子数如右图,甲林区刚好有一只鸽子是五种情形中的一种,故所求概率为1/5。显然,该生错在对“等可能事件”的理解上,而且存在这种错误理解的可能不止少局部学生,鉴于此,我并没有立即讲评,而是让学生继续考虑还有什么思路?略停一分钟:生2:每只鸽子有两种放飞途径,共有2=16种放飞方式,而甲林区有一只鸽子的方式只有4种。故,所求概率为1/4!。〔这时候学生发现两个结论不一致!〕针对以上两个结论,组织学生展开讨论:师:上述两种思路,你能确定哪一种是错误的?生齐答:第一种!师:为什么错?生:〔无语〕师:那我们分别按方法2的思路研究其它四种情形发生的概率:师生共同讨论产生下表:情形甲林区鸽子数乙林区鸽子数发生的概率1041/162134/163226/164314/165401/16合计1这时学生恍然大悟:情形1 ~5不是等可能事件,当然概率不是1/5!以上过程让学生更深层地领会到等可能事件发生的意义,在应用中学生对“等可能事件”的认识产生了质的飞跃。张奠宙先生曾经说过:“数学教学的有效性关键在于对数学本质的把握、揭示和体验”。笔者理解,这种“对数学本质的把握、揭示和体验”只有在应用中才能得到验证,在应用的同时使得概念学习得到“升华”,让学生领会数学概念才是数学解题的“灵魂”,从而让学生的思维变得更开阔,更活泼,更富有活力。建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人〔在教师指导和学习伙伴的帮助下〕协作,主动建构而获得的,在概念教学中,恰当地
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司普法教育演讲
- 会计实习工作总结
- 2025标准版股权转让合同范本
- 2025二手车行纪销售合同
- 尊重规范主题班会
- 经典案例2024年计算机二级考试试题
- 党建活动推广合同标准文本
- 临时上课合同标准文本
- 2025典当行的借款合同
- 加强社区青年成长的行动方案计划
- 掌握重点中职电子商务教师资格证试题与答案
- 河南省郑州市管城区2024-2025学年级九年级下学期第一次模拟数学试题(原卷版+解析版)
- 隔音涂料施工方案
- 甘肃卷2024年高考真题化学试题(含答案)
- 医院品管圈(QCC)活动成果报告书-基于QFD 润心服务改善 ICU 患者及家属就医体验
- JJG 693-2011可燃气体检测报警器
- 学唱虫儿飞(含歌词、曲谱)
- 天津科技大学教师公寓租赁管理办法
- 第七章--展示的版面和色彩设计
- DBT29-295-2021 600MPa级高强钢筋混凝土结构技术标准
- Q∕GDW 12164-2021 变电站远程智能巡视系统技术规范
评论
0/150
提交评论