版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年山东省济南市中考数学试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,
只有一项是符合题目要求的.)
1.(4分)-2的绝对值是()
A.2B.-2C.±2D.圾
2.(4分)如图所示的几何体,其俯视图是()
3.(4分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗
中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()
A.0.215X108B.2.15X107C.2.15X106D.21.5X106
5.(4分)古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取
的部分图形,其中既是轴对称图形又是中心对称图形的是()
6.(4分)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外
书的数量,绘制了折线统计图,下列说法正确的是()
A.每月阅读课外书本数的众数是45
B.每月阅读课外书本数的中位数是58
C.从2到6月份阅读课外书的本数逐月下降
D.从1至U7月份每月阅读课外书本数的最大值比最小值多45
7.(4分)下列运算正确的是()
A.(-2a3)2=4小B.a2'a3=a6
C.3a+a2—3aiD.(a-6)2—a2-b2
8.(4分)如图,在平面直角坐标系中,XABC的顶点都在格点上,如果将△ABC先沿y
轴翻折,再向上平移3个单位长度,得到△ABC,那么点B的对应点夕的坐标为()
9.(4分)若-2,则一次函数y=("z+1)x+1-"z的图象可能是()
10.(4分)如图,在AABC中,AB=AC,分别以点A、8为圆心,以适当的长为半径作弧,
两弧分别交于E,F,作直线ER。为BC的中点,M为直线E尸上任意一点.若BC=4,
△ABC面积为10,则长度的最小值为()
11.(4分)如图,△ABC、区域为驾驶员的盲区,驾驶员视线尸2与地面8E的央角
NPBE=43°,视线PE与地面BE的夹角NPEB=20°,点A,尸为视线与车窗底端的
交点,AF//BE,AC±BE,FDLBE.若A点到B点的距离AB=1.6〃z,则盲区中。E的
长度是()
(参者数据:sin43°—0.7,tan43°—0.9,sin20°—0.3,tan20°^0.4)
A.2.6mB.2.8mC.3.4mD.4.5m
12.(4分)已知抛物线y=7+(2相-6)x+«?-3与y轴交于点A,与直线元=4交于点2,
当x>2时,y值随尤值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B
两点),M为G上任意一点,设M的纵坐标为f,若f2-3,则力的取值范围是()
A.B.3W«IW3C.机23D.1WWJW3
22
二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)
13.(4分)分解因式:2a2-ab=.
14.(4分)在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任
意摸出一个球,则摸出白球的概率是.
15.(4分)代数式工与代数式2的值相等,则%=.
x-1x-3
16.(4分)如图,在正六边形ABCDE尸中,分别以C,尸为圆心,以边长为半径作弧,图
中阴影部分的面积为24m则正六边形的边长为.
17.(4分)如图,在一块长15根、宽10%的矩形空地上,修建两条同样宽的相互垂直的道
路,剩余分栽种花草,要使绿化面积为126根2,则修建的路宽应为米.
18.(4分)如图,在矩形纸片ABC。中,AD=10,A8=8,将AB沿AE翻折,使点8落在
B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段上的点。处,所为折
痕,连接AC'.若CF=3,贝!Jtan/8'AC'=.
三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)
19.(6分)计算:(工)0-2sin30°+74+(―),
22
4(2x-l)<3x+l①
20.(6分)解不等式组:-3,并写出它的所有整数解.
2x〉x号②
21.(6分)如图,在口ABC。中,对角线AC,8。相交于点O,过点。的直线分别交AD,
BC于点,E,F.求证:AE=CF.
22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极
参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进
行调查统计,并根据调查统计结果绘制了如表格和统计图:
人
数
12
180
6
4
2
0
次数
等级次数频率
不合格100Wx<120a
合格120W尤<140b
良好l40Wx<160
优秀l60Wx<180
请结合上述信息完成下列问题:
(1)ci=,b=;
(2)请补全频数分布直方图;
(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;
(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到
合格及以上的人数.
23.(8分)如图,为的直径,点C是O。上一点,与O。相切于点C,过点A
作AO_LDC,连接AC,BC.
(1)求证:AC是NZM3的角平分线;
(2)若AO=2,AB=3,求AC的长.
24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、8两种型号的5G手机,
进价和售价如表所示:型号价格
进价(元/部)售价(元/部)
A30003400
B35004000
某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.
(1)营业厅购进A、B两种型号手机各多少部?
(2)若营业厅再次购进A、8两种型号手机共30部,其中B型手机的数量不多于A型
手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,
最大利润是多少?
25.(10分)如图,矩形OA8C的顶点A,C分别落在x轴,y轴的正半轴上,顶点8(2,
273),反比例函数y=K(x>0)的图象与8C,AB分别交于。,E,BD=1..
x2
(1)求反比例函数关系式和点E的坐标;
(2)写出。E与AC的位置关系并说明理由;
(3)点尸在直线AC上,点G是坐标系内点,当四边形8C/G为菱形时,求出点G的
坐标并判断点G是否在反比例函数图象上.
26.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,ZDAE=90°,ZADE=^.
2
ZACB,连接8D,BE,点尸是8。的中点,连接CT.
(1)当NC4B=45°时.
①如图1,当顶点。在边AC上时,请直接写出与NCB4的数量关系是•线
段BE与线段CF的数量关系是;
②如图2,当顶点D在边A8上时,(1)中线段BE与线段CF的数量关系是否仍然成立?
若成立,请给予证明,若不成立,请说明理由;
学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有
关知识来解决问题;
思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用
旋转性质、三角形全等或相似有关知识来解快问题.
(2)当/CAB=30°时,如图3,当顶点。在边AC上时,写出线段BE与线段CT的数
量关系,并说明理由.
图1图2图3
27.(12分)如图1,抛物线y=-尤2+区+°过点4(-1,0),点8(3,0)与y轴交于点C.在
x轴上有一动点£(相,0)(0<m<3),过点£作直线Lx轴,交抛物线于点
(1)求抛物线的解析式及C点坐标;
(2)当初=1时,。是直线/上的点且在第一象限内,若△ACD是以NOC4为底角的等
腰三角形,求点〃的坐标;
(3)如图2,连接8M并延长交y轴于点N,连接AM,OM,设的面积为Si,△
MON的面积为S2,若SI=2S2,求小的值.
图1图2
2020年山东省济南市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,
只有一项是符合题目要求的.)
1.(4分)-2的绝对值是()
A.2B.-2C.±2D.圾
【分析】根据绝对值的性质,当。是负有理数时,。的绝对值是它的相反数-。,解答即
可.
【解答】解:-2的绝对值是2;
故选:A.
2.(4分)如图所示的几何体,其俯视图是()
A.~~B.1~~।-IC.।~~।~1D.—―—
【分析】根据俯视图是从物体上面看所得到的图形判断即可.
【解答】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左
齐.
故选:C.
3.(4分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗
中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()
A.0.215X108B.2.15X107C.2.15X106D.21.5X106
【分析】科学记数法的表示形式为aX10,1的形式,其中1W间<10,n为整数.确定n
的值时,要看把原数变成。时,小数点移动了多少位,”的绝对值与小数点移动的位数相
同.当原数绝对值210时,〃是正数;当原数的绝对值<1时,九是负数.
【解答】解:将21500000用科学记数法表示为2.15X107,
故选:B.
4.(4分)如图,AB//CD,ADLAC,ZBAD=35°,则/ACZ)=()
【分析】由平行线的性质得/4£^=/54。=35°,再由垂线的定义可得三角形AC。是
直角三角形,进而得出NAC。的度数.
【解答】解:•••A8〃C。,
ZADC^ZBAD^35°,
':AD±AC,
:.ZADC+ZACD^90°,
AZACD=90°-35°=55°,
故选:C.
5.(4分)古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取
的部分图形,其中既是轴对称图形又是中心对称图形的是()
□
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:4是轴对称图形,不是中心对称图形,故本选项不合题意;
8、是轴对称图形,不是中心对称图形,故本选项不合题意;
C、不是轴对称图形,也不是中心对称图形,故本选项不合题意;
。、既是轴对称图形又是中心对称图形的,故本选项符合题意.
故选:D.
6.(4分)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外
书的数量,绘制了折线统计图,下列说法正确的是()
A.每月阅读课外书本数的众数是45
B.每月阅读课外书本数的中位数是58
C.从2到6月份阅读课外书的本数逐月下降
D.从1到7月份每月阅读课外书本数的最大值比最小值多45
【分析】从折线图中获取信息,通过折线图和中位数、众数的定义及极差等知识求解.
【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的
众数是58,故选项A错误;
每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字
为58,所以该组数据的中位数为58,故选项8正确;
从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数
上升,故选项c错误;
从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.
故选:B.
A本数(本)
10=…
01234567月份
7.(4分)下列运算正确的是()
A.(-2c?)2=4A6B.cr'a3=a6
C.3a+a2—3aiD.(a-b)2—a2-b1
【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.
【解答】解::(-2/)2=4/,故选项A正确;
a2,a3—a5,故选项2错误;
3°+/不能合并,故选项C错误;
V(a-b)2=a2-lab+b2,故选项。错误;
故选:A.
8.(4分)如图,在平面直角坐标系中,AABC的顶点都在格点上,如果将△ABC先沿y
轴翻折,再向上平移3个单位长度,得到△A—C,那么点B的对应点8的坐标为()
【分析】根据轴对称的性质和平移规律求得即可.
【解答】解:由坐标系可得B(-3,1),将△ABC先沿y轴翻折得到8点对应点为(3,
1),再向上平移3个单位长度,点8的对应点B的坐标为(3,1+3),
即(3,4),
故选:C.
9.(4分)若/-2,则一次函数y=(优+1)x+1-"2的图象可能是()
【分析】由根<-2得出根+1<0,1-m>0,进而利用一次函数的性质解答即可.
【解答】解:••加<-2,
m+l<0,1-m>0,
所以一次函数y=-1)x+1-机的图象经过一,二,四象限,
故选:D.
10.(4分)如图,在△ABC中,AB^AC,分别以点4、8为圆心,以适当的长为半径作弧,
两弧分别交于E,F,作直线£孔。为BC的中点,M为直线E尸上任意一点.若BC=4,
△ABC面积为10,则长度的最小值为()
【分析】由基本作图得到得跖垂直平分A8,则所以连
接MA、DA,如图,利用两点之间线段最短可判断的最小值为AD再利用等腰
三角形的性质得到ADL2C,然后利用三角形面积公式计算出AD即可.
【解答】解:由作法得斯垂直平分AB,
:.MB=MA,
:.BM+MD=MA+MD,
连接AM、DA,如图,
,:MA+MD^AD(当且仅当M点在上时取等号),
.,.MA+MD的最小值为AD,
\'AB=AC,。点为BC的中点,
J.ADLBC,
SAABC——,BC*AD—10,
“=里咨=5,
C.BM+MD长度的最小值为5.
故选:D.
11.(4分)如图,△ABC、△FEO区域为驾驶员的盲区,驾驶员视线尸8与地面BE的央角
/PBE=43°,视线PE与地面BE的夹角NPE8=20°,点A,尸为视线与车窗底端的
交点,AF//BE,ACLBE,FD±BE.若A点到8点的距离A8=1.6m,则盲区中。E的
长度是()
(参者数据:sin43°七0.7,tan43°-0.9,sin20°-0.3,tan20°七0.4)
CB
A.2.6mB.2.8mC.3.4mD.4.5m
【分析】首先证明四边形AC。尸是矩形,求出AC,。尸即可解决问题.
【解答】解:':FD±AB,AC±EB,
J.DF//AC,
'JAF//EB,
四边形ACDF是平行四边形,
VZACD=90°,
四边形AC。尸是矩形,
:.DF=AC,
在RtZ\ACB中,VZACB=90°,
,AC=AB.sin43°^1.6X0.7=1.12(m),
:.DF=AC=1.44(m),
在RtZVDE/中,':ZFDE^9Q°,
/.tanZE=^^,
DE
/.£)£««1LJ^=2.8(m),
0.4
故选:B.
12.(4分)已知抛物线丫=/+(2优-6)彳+%2-3与>轴交于点A,与直线尤=4交于点8,
当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B
两点),M为G上任意一点,设M的纵坐标为若f2-3,则根的取值范围是()
A.m^—B.C.机》3D.
22
2
【分析】根据题意,X=-q_W2,4ac-b4一3
2a4a
,2m-6<0
2m-642
【解答】解:当对称轴在y轴的右侧时,2,
4(m2-3)-(2m~6)2》《
解得3WM<3,
2
当对称轴是y轴时,m=3,符合题意,
当对称轴在y轴的左侧时,2m-6>0,解得机>3,
综上所述,满足条件的根的值为相
2
故选:A.
二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)
13.(4分)分解因式:2a2-ab=a(2a-b).
【分析】直接提取公因式a,进而得出答案.
【解答】解:2a2-ab=a(2a-b).
故答案为:a(2a-6).
14.(4分)在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任
意摸出一个球,则摸出白球的概率是2.
一5一
【分析】让白球的个数除以球的总数即为摸到白球的概率.
【解答】解:共有球3+2=5个,白球有2个,
因此摸出的球是白球的概率为:2.
5
故答案为:1.
5
15.(4分)代数式旦与代数式_2_的值相等,则尸7.
x-lx-3
【分析】根据题意列出分式方程,求出解即可.
【解答】解:根据题意得:旦
x-lx-3
去分母得:3x-9=2x-2f
解得:x=7,
经检验x=7是分式方程的解.
故答案为:7.
16.(4分)如图,在正六边形A3CDE/中,分别以C,产为圆心,以边长为半径作弧,图
中阴影部分的面积为24m则正六边形的边长为36.
ED
【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式计算即可.
【解答】解::正六边形的内角是120度,阴影部分的面积为24m
设正六边形的边长为r,
.•.典”X2=24n,
360
解得r=6.
则正六边形的边长为6.
17.(4分)如图,在一块长15机、宽10机的矩形空地上,修建两条同样宽的相互垂直的道
路,剩余分栽种花草,要使绿化面积为126切2,则修建的路宽应为1米.
【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长
方形,根据长方形的面积公式列方程求解即可.
【解答】解:设道路的宽为了相,根据题意得:
(10-%)(15-x)=126,
解得:xi=l,X2=24(不合题意,舍去),
则道路的宽应为1米;
故答案为:1.
18.(4分)如图,在矩形纸片A8C。中,AD=10,AB=8,将AB沿AE翻折,使点8落在
处,AE为折痕;再将EC沿跖翻折,使点C恰好落在线段上的点。处,EF为折
痕,连接AC.若CB=3,则tan/BNC'=A.
一4一
【分析】连接AR设CE=x,用x表示AE、EF,再证明/A£R=90°,由勾股定理得
通过进行等量代换列出方程便可求得x,再进一步求出4C,便可求得结果.
【解答】解:连接AF,设CE=;c,则C'E=CE=x,BE=B'E=10-x,
:四边形ABC。是矩形,
:.AB=CD=S,AD=BC=IO,ZB=ZC=ZD=90°,
:.AE1=AB2+BE2=S2+(10-X)2=164-20x+/,
EF2=CE^+CF1=X2+32=X2+9,
由折叠知,ZAEB=ZAEB',ZCEF=ZC'EF,
VZAEB+ZAEB'+ZCEF+ZC'EF=180°,
/.ZAEF=ZAEB'+ZCEF=90°,
:.AF2^AE1+EF2^164-20X+X2+X2+9=2X2-20x+173,
VAF2=A£)2+DF2=102+(8-3)2=125,
-20x+173=125,
解得,尤=4或6,
当x=6时,EC=EC'=6,BE=B'E=8-6=2,EC1>B'E,不合题意,应舍去,
:.CE=CE=4,
:.B'C=B'E-CE=(10-4)-4=2,
:NB'=ZB=90°,AB'=AB=8,
4
三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)
19.(6分)计算:(工)0-2sin30°+74+(―)
22
【分析】直接利用负整数指数幕的性质以及零指数幕的性质等知识分别化简得出答案.
【解答】解:原式1-2X_L+2+2
2
1-1+2+2
=4.
4(2x-l)<3x+l①
20.(6分)解不等式组:°、x-3^,并写出它的所有整数解.
2x〉号②
【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.
4(2x-l)<3x+l①
解不等式①得:xWl,
解不等式②得:%>-b
不等式组的解集为-
不等式组的所有整数解为0,1.
21.(6分)如图,在nABCQ中,对角线AC,8。相交于点O,过点。的直线分别交A。,
【分析】利用平行四边形的性质得出AO=C。,AD//BC,进而得出NE4C=NFCO,再
利用ASA求出即可得出答案.
【解答】证明:ABC。的对角线AC,8。交于点。,
:.AO^CO,AD//BC,
:.ZEAC=ZFCO,
在△AOE■和△COP中
,ZEA0=ZFC0
<AO=OC,
LZAOE=ZCOF
AAOE^ACOF(ASA),
:.AE^CF.
22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极
参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进
行调查统计,并根据调查统计结果绘制了如表格和统计图:
人
数
12
180
6
4
2
0
次数
等级次数频率
不合格100Wx<120a
合格120W尤<140b
良好l40Wx<160
优秀l60Wx<180
请结合上述信息完成下列问题:
(1)a=0,1,b=0.35;
(2)请补全频数分布直方图;
(3)在扇形统计图中,“良好”等级对应的圆心角的度数是108。;
(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到
合格及以上的人数.
【分析】(1)用调查总人数减去其他小组的频数即可求得。值;
(2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;
(3)用总人数乘以达标率即可.
【解答】解:(1)根据频数分布直方图可知:a=4+40=0.1,
因为40X25%=10,
所以b=(40-4-12-10)4-40=144-40=0.35,
故答案为:0.1;0.35;
(2)如图,即为补全的频数分布直方图;
人数f14
4
2
0
12014016080
(3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°X工2=108°;
40
故答案为:108°;
(4)因为2000X处里=1800,
40
所以估计该校学生一分钟跳绳次数达到合格及以上的人数是1800.
23.(8分)如图,为。。的直径,点C是。。上一点,C£>与。。相切于点C,过点A
作AZ)_LOC,连接AC,BC.
(1)求证:AC是/D48的角平分线;
(2)若4D=2,42=3,求AC的长.
【分析】(1)连接。C,根据切线的性质可得/。。=90。,再根据AOLOC,和半径线
段即可证明AC是NZM8的角平分线;
(2)利用圆周角定理得到/ACB=90°,再证明RtA4Z)CsRtZ\ACB,对应边成比例即
可求出AC的长.
【解答】解:(1)证明:连接OC,如图,
与。。相切于点C,
:.ZOCD=9Q°,
:.ZACD+ZACO^90°,
\'AD±DC,
:.ZADC=90°,
/.ZACD+ZDAC=90°,
NACO=ADAC,
\'OA=OC,
:.ZOAC=ZOCA,
:.ZDAC=ZOAC,
;.AC是//MB的角平分线;
(2):AB是。。的直径,
ZACB=90",
:.ZD=ZACB=90°,
ZDAC^ABAC,
/.RtAADC^RtAACB,
.AD=AC
"ACAB'
:.AC2=AD'AB=2X3=6,
•'•AC—
24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、8两种型号的5G手机,
进价和售价如表所示:型号价格
进价(元/部)售价(元/部)
A30003400
B35004000
某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.
(1)营业厅购进A、B两种型号手机各多少部?
(2)若营业厅再次购进A、8两种型号手机共30部,其中8型手机的数量不多于A型
手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,
最大利润是多少?
【分析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求
得营业厅购进A、8两种型号手机各多少部;
(2)根据题意,可以得到利润与A种型号手机数量的函数关系式,然后根据2型手机的
数量不多于A型手机数量的2倍,可以求得A种型号手机数量的取值范围,再根据一次
函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是
多少.
【解答】解:(1)设营业厅购进A、B两种型号手机分别为。部、。部,
(3000a+3500b=32000,
l(3400-3000)a+(4000-3500)b=440(,
解得,卜=6,
lb=4
答:营业厅购进A、8两种型号手机分别为6部、4部;
(2)设购进A种型号的手机尤部,则购进B种型号的手机(30-尤)部,获得的利润为
wyG,
w=(3400-3000)x+(4000-3500)(30-x)=-100x+15000,
■:B型手机的数量不多于A型手机数量的2倍,
.'.30-xW2尤,
解得,x210,
:w=-100.X+15000,k=-100,
随尤的增大而减小,
...当x=10时,w取得最大值,此时w=14000,30-x=20,
答:营业厅购进A种型号的手机10部,8种型号的手机20部时获得最大利润,最大利
润是14000元.
25.(10分)如图,矩形0ABe的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,
273),反比例函数y=K(x>0)的图象与8C,A8分别交于。,E,BD=1-.
x2
(1)求反比例函数关系式和点E的坐标;
(2)写出。E与AC的位置关系并说明理由;
(3)点尸在直线AC上,点G是坐标系内点,当四边形2CFG为菱形时,求出点G的
坐标并判断点G是否在反比例函数图象上.
【分析】(1)求出。(3,2«),再用待定系数法即可求解;
2
(2)证明型=毁,即可求解;
ABBC
(3)①当点/在点C的下方时,求出FH=1,CH=y/^,求出点尸(1,«),则点G
(3,«),即可求解;②当点尸在点C的上方时,同理可解.
【解答】解:⑴,:B(2,2正),则BC=2,
而BD=A,
2
:.CD=2-A=3.,故点。(3,2«),
222
将点。的坐标代入反比例函数表达式得:2/5=与,解得上=3炳,
~2
故反比例函数表达式为y=a叵,
X
当x=2时,y=-3愿,故点£(2,3愿);
-22
(2)由(1)知,D(3,2«),点E(2,当巨),点B(2,2«),
_22
则加>=工,BE=^-,
22
1返
加BD=5=IEB=”—=I=BD
而万了直勾71BC,
:.DE//AC;
(3)①当点尸在点C的下方时,如下图,
过点尸作尸从Ly轴于点”,
:四边形BCFG为菱形,则BC=CF=FG=BG=2,
在RlZkOAC中,OA=8C=2,OB=AB=2^
则tan/OCA=3Q_=_^==返,故NOCA=30°,
CO2V33
则FH=AFC=1,CH=CF'cosZOCA=2X四=
22
故点尸(1,M),则点G(3,遮),
当x=3时,y=MZ2=«,故点G在反比例函数图象上;
X
②当点尸在点C的上方时,
同理可得,点G(1,3、后),
同理可得,点G在反比例函数图象上;
综上,点G的坐标为(3,«)或(1,3«),这两个点都在反比例函数图象上.
26.(12分)在等腰△ABC中,AC^BC,△&£>£是直角三角形,ZDAE=90°,ZADE^l.
2
/ACB,连接8。,BE,点尸是8。的中点,连接CF.
(1)当NCAB=45°时.
①如图1,当顶点D在边AC上时,请直接写出NEAB与/CBA的数量关系是/EAB
=ZCBA.线段BE与线段CF的数量关系是CF=1-BE;
2
②如图2,当顶点Z)在边A3上时,(1)中线段BE与线段CF的数量关系是否仍然成立?
若成立,请给予证明,若不成立,请说明理由;
学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有
关知识来解决问题;
思路二:取。E的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用
旋转性质、三角形全等或相似有关知识来解快问题.
(2)当NCAB=30°时,如图3,当顶点。在边AC上时,写出线段BE与线段CB的数
量关系,并说明理由.
【分析】(1)①如图1中,连接3E,设。E交A3于T.首先证明再利用直
角三角形斜边中线的性质解决问题即可.
②解法一:如图2-1中,取的中点M,BE的中点N,连接CM,MN.证明△CMF
”丛BMN(SAS)可得结论.
解法二:如图2-2中,取。E的中点G,连接AG,CG,并把△C4G绕点C逆时针旋转
90°得至【「△CBT,连接GT,BG.证明四边形BEGT是平行四边形,四边形。GBT
是平行四边形,可得结论.
(2)结论:BE=2yf3CF.如图3中,取AB的中点T,连接CT,FT.证明△BAEs4
CTF可得结论.
【解答】解:(1)①如图1中,连接8E,设QE交于T.
•:CA=CB,ZCAB=45°,
:.ZCAB=ZABC=45°,
:.ZACB=90°,
VZADE=AzACB=45°,/DAE=90°,
2
:.ZADE=ZAED=45°,
:.AD=AE,
,:ZDAT=ZEAT=45°,
C.ATLDE,DT=ET,
:.AB垂直平分DE,
:.BD=BE,
,:ZBCD=90°,DF=FB,
:.CF=1-BD,
2
:.CF=1.BE.
2
VZCBA=45°,/EAB=45°,
:.ZEAB=ZABC.
故答案为:ZEAB=ZABC,CF=1-BE.
2
②结论不变.
解法一:如图2-1中,取AB的中点M,3E的中点N,连接CM,MN.
图2-1
VZACB=90°,CA^CB,AM^BM,
C.CMLAB,CM=BM=AM,
设AO=AE=y.FM=x,DM=a,则。尸=FB=a+x,
':AM=BM,
・“+4=〃+2元
:.y=2x,即
':AM=BM,EN=BN,
:.AE=2MN,MN//AE,
:・MN=FM,NBMN=NEAB=9U°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 照片滤镜调色课程设计
- 二手车交易平台营业员销售总结
- 春游课程设计
- 家具设计师工作总结
- 风险防控方案计划
- 法律服务行业风险防范方案
- 化工行业卫生防护要点
- 物流运输行业咨询服务经验总结
- 药店卫生管理措施
- 金融领域的投资顾问职责
- GB/T 41904-2022信息技术自动化基础设施管理(AIM)系统要求、数据交换及应用
- GB/T 41908-2022人类粪便样本采集与处理
- GB/T 3745.1-1983卡套式三通管接头
- GB/T 26003-2010无负压管网增压稳流给水设备
- 信息系统运维服务方案
- 简支梁、悬臂梁挠度计算程序(自动版)
- 沛县生活垃圾焚烧发电项目二期工程 环境影响报告书 报批稿
- DB44∕T 2149-2018 森林资源规划设计调查技术规程
- 统编版小学四年级语文上册五六单元测试卷(附答案)
- 商票保贴协议
- 高支模技术交底(新版)
评论
0/150
提交评论