版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省眉山外国语学校高考数学二模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为()A. B.C. D.2.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入()A., B. C., D.,3.已知全集,则集合的子集个数为()A. B. C. D.4.已知函数,当时,恒成立,则的取值范围为()A. B. C. D.5.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.166.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.47.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.368.已知函数()的部分图象如图所示.则()A. B.C. D.9.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()A.或 B.或 C.或 D.或10.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.11.已知数列为等差数列,且,则的值为()A. B. C. D.12.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则过原点且与曲线相切的直线方程为____________.14.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则_________.15.点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为__________.16.已知边长为的菱形中,,现沿对角线折起,使得二面角为,此时点,,,在同一个球面上,则该球的表面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.18.(12分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).19.(12分)已知,.(1)当时,证明:;(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.20.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.21.(12分)设实数满足.(1)若,求的取值范围;(2)若,,求证:.22.(10分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【详解】因为,所以是偶函数,排除C和D.当时,,,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【点睛】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.2、A【解析】
依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.3、C【解析】
先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题4、A【解析】
分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.5、D【解析】
根据复数乘方公式:,直接求解即可.【详解】,.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.6、C【解析】
根据对称性即可求出答案.【详解】解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【点睛】本题主要考查函数的对称性的应用,属于中档题.7、B【解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.8、C【解析】
由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【详解】依题意,,即,解得;因为所以,当时,.故选:C.【点睛】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.9、D【解析】
设,,根据和抛物线性质得出,再根据双曲线性质得出,,最后根据余弦定理列方程得出、间的关系,从而可得出离心率.【详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,,则,为双曲线上的点,则,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故选:D.【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.10、D【解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.11、B【解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.12、C【解析】
设公差为,则由题意可得,解得,可得.令
,可得
当时,,当时,,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,
则,解得
,.
令
,可得,故当时,,当时,,
故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.14、【解析】
由题意可得,又由于为的中点,且点在轴上,所以可得点的横坐标,代入抛物线方程中可求点的纵坐标,从而可求出点的坐标,再利用两点间的距离公式可求得结果.【详解】解:因为是抛物线的焦点,所以,设点的坐标为,因为为的中点,而点的横坐标为0,所以,所以,解得,所以点的坐标为所以,故答案为:【点睛】此题考查抛物线的性质,中点坐标公式,属于基础题.15、【解析】如图,是切点,是的中点,因为,所以,又,所以,,又,根据双曲线的定义,有,即,两边平方并化简得,所以,因此.16、【解析】
分别取,的中点,,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,由勾股定理可得、,再根据球的面积公式计算可得;【详解】如图,分别取,的中点,,连接,则易得,,,,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,可得,解得,.故该球的表面积为.故答案为:【点睛】本题考查多面体的外接球的计算,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】
(1)由奇函数可知在定义域上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,,即恒成立,故在上为单调减函数,其中.则可转化为,故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于恒成立的问题,常转化为求的最小值,使;对于恒成立的问题,常转化为求的最大值,使.18、(1)1;(2)见解析【解析】
(1)分别求得与的导函数,由导函数与单调性关系即可求得的值;(2)由(1)可知当时,,当时,,因而,构造,由对数运算及不等式放缩可证明,从而不等式可证明.【详解】(1)∵函数在上单调递减,∴,即在上恒成立,∴,又∵函数在上单调递增,∴,即在上恒成立,,∴综上可知,.(2)证明:由(1)知,当时,函数在上为减函数,在上为增函数,而,∴当时,,当时,.∴∴即,∴.【点睛】本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题.19、(1)证明见解析;(2).【解析】
(1)令,求导,可知单调递增,且,,因而在上存在零点,在此取得最小值,再证最小值大于零即可.(2)根据题意得到在点处的切线的方程①,再设直线与相切于点,有,即,再求得在点处的切线直线的方程为②由①②可得,即,根据,转化为,,令,转化为要使得在上存在零点,则只需,求解.【详解】(1)证明:设,则,单调递增,且,,因而在上存在零点,且在上单调递减,在上单调递增,从而的最小值为.所以,即.(2),故,故切线的方程为①设直线与相切于点,注意到,从而切线斜率为,因此,而,从而直线的方程也为②由①②可知,故,由为正整数可知,,所以,,令,则,当时,为单调递增函数,且,从而在上无零点;当时,要使得在上存在零点,则只需,,因为为单调递增函数,,所以;因为为单调递增函数,且,因此;因为为整数,且,所以.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.20、(1);(2)见解析.【解析】
(1)利用独立事件的概率乘法公式可计算出所求事件的概率;(2)由题意可知随机变量的可能取值有、、,计算出随机变量在不同取值下的概率,由此可得出随机变量的分布列.【详解】(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件,则;(2)由题意可知,随机变量的可能取值为、、.则,,.故的分布列为【点睛】本题考查概率的计算,同时也考查了随机变量分布列,考查计算能力,属于基础题.21、(1)(2)证明见解析【解析】
(1)依题意可得,考虑到,则有再分类讨论可得;(2)要证明,即证,即证.利用基本不等式即可得证;【详解】解:(1)由及,得,考虑到,则有,它可化为或即或前者无解,后者的解集为,综上,的取值范围是.(2)要证明,即证,由,得,即证.因为(当且仅当,时取等号).所以成立,故成立.【点睛】本题考查分类讨论法解绝对值不等式,基本不等式的应用,属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度蔬菜瓜果采购与销售合同3篇
- 二零二四年度工程招投标策略咨询合同2篇
- 2024年峨桥卫生院牙科器材购销协议2篇
- 2024年度网络游戏运营服务合同
- 2024年度电商企业员工培训劳动合同3篇
- 2024年代为签署商业协议授权文件
- 2024年建筑工程钢筋连接专项协议模板版B版
- 营销方案的制定步骤计划
- 2024年廉洁工程分包协议3篇
- 2024年度电源模块定制开发与生产合同2篇
- 《定积分的概念》设计 全省一等奖
- 山城重庆的城市介绍PPT
- 苏轼《赤壁赋》课件
- 硬笔书法全册教案共20课时
- 实木家具生产工艺流程图解
- 酒店报销水单经典模板
- EPC物资采购工作的总体安排与资源配置
- 大型机械租赁供应商考评表
- 无机化学说课稿
- 小型刮板式花生去壳机设计【带图纸】
- 铁路货运组织全套课件
评论
0/150
提交评论