4.2.2指数函数的图象和性质(3)课件高一上学期数学人教A版_第1页
4.2.2指数函数的图象和性质(3)课件高一上学期数学人教A版_第2页
4.2.2指数函数的图象和性质(3)课件高一上学期数学人教A版_第3页
4.2.2指数函数的图象和性质(3)课件高一上学期数学人教A版_第4页
4.2.2指数函数的图象和性质(3)课件高一上学期数学人教A版_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章指数函数与对数函数4.2

指数函数4.2.2指数函数的图象和性质(3)内容索引学习目标活动方案检测反馈学习目标1.会应用指数函数的性质求复合函数的单调性、奇偶性.2.会利用指数函数解决简单的应用题.3.通过探究、小组合作学习,体会分类讨论、数形结合及等价转化思想的应用.活动方案活动一指数型复合函数的性质【答案】[2,+∞)活动二数形结合例

3某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%,写出这种物质的剩余量y关于时间x的关系式.活动三指数函数在实际问题中的应用【解析】

设该物质最初的质量是1,经过x年剩余量是y.经过1年,剩余量y=1×0.84=0.841;经过2年,剩余量y=0.84×0.84=0.842;……一般地,经过x年,剩余量y=0.84x(x>0,x∈N*).例

4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x(x∈N*),本利和(本金加上利息)为y元.(1)写出本利和y随存期x变化的函数关系式;(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和.(保留两位小数)【解析】(1)已知本金为a元,利率为r,则1期后的本利和为y=a+ar=a(1+r),2期后的本利和为y=a(1+r)+a(1+r)r=a(1+r)2,3期后的本利和为y=a(1+r)3,……x期后的本利和为y=a(1+r)x,x∈N*,即本利和y随存期x变化的函数关系式为y=a(1+r)x,x∈N*.(2)将a=1000,r=2.25%,x=5代入上式,得y=1000×(1+2.25%)5=1000×1.02255≈1117.68,即5期后的本利和约为1117.68元.类似上面的题目,设本金为N,每期利率为p,则对于经过x期后本息和y=N(1+p)x,形如y=kax(k∈R,a>0且a≠1)的函数称为指数型函数.检测反馈245131.(2022·海南二中高一开学考试)若指数函数y=b·ax在区间[b,2]上的最大值和最小值的和是6,则实数a的值为(

)A.2或3 B.-3C.2 D.3【解析】

由题知y=f(x)=b·ax为指数函数,故b=1,a>0且a≠1,即y=ax在区间[1,2]上的最大值和最小值的和是6.由于指数函数为单调函数,故f(x)最值在端点处取得,即f(1)+f(2)=a+a2=6,解得a=2或a=-3(舍去),故实数a的值为2.【答案】C24513【答案】C24531【答案】ABD24534.如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与1的大小关系是____________.1【解析】

作直线x=1,由图可得c1>d1>1>a1>b1,即c>d>1>a>b.【答案】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论