![2024年中考数学二轮题型突破练习题型6 几何最值(专题训练)(教师版)_第1页](http://file4.renrendoc.com/view2/M01/07/08/wKhkFmZLY2iAcBgzAAFujNf30bk462.jpg)
![2024年中考数学二轮题型突破练习题型6 几何最值(专题训练)(教师版)_第2页](http://file4.renrendoc.com/view2/M01/07/08/wKhkFmZLY2iAcBgzAAFujNf30bk4622.jpg)
![2024年中考数学二轮题型突破练习题型6 几何最值(专题训练)(教师版)_第3页](http://file4.renrendoc.com/view2/M01/07/08/wKhkFmZLY2iAcBgzAAFujNf30bk4623.jpg)
![2024年中考数学二轮题型突破练习题型6 几何最值(专题训练)(教师版)_第4页](http://file4.renrendoc.com/view2/M01/07/08/wKhkFmZLY2iAcBgzAAFujNf30bk4624.jpg)
![2024年中考数学二轮题型突破练习题型6 几何最值(专题训练)(教师版)_第5页](http://file4.renrendoc.com/view2/M01/07/08/wKhkFmZLY2iAcBgzAAFujNf30bk4625.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE题型六几何最值(专题训练)1.(2023·四川宜宾·统考中考真题)如图,SKIPIF1<0和SKIPIF1<0是以点SKIPIF1<0为直角顶点的等腰直角三角形,把SKIPIF1<0以SKIPIF1<0为中心顺时针旋转,点SKIPIF1<0为射线SKIPIF1<0、SKIPIF1<0的交点.若SKIPIF1<0,SKIPIF1<0.以下结论:①SKIPIF1<0;②SKIPIF1<0;③当点SKIPIF1<0在SKIPIF1<0的延长线上时,SKIPIF1<0;④在旋转过程中,当线段SKIPIF1<0最短时,SKIPIF1<0的面积为SKIPIF1<0.其中正确结论有()
A.1个 B.2个 C.3个 D.4个【答案】D【分析】证明SKIPIF1<0即可判断①,根据三角形的外角的性质得出②,证明SKIPIF1<0得出SKIPIF1<0,即可判断③;以SKIPIF1<0为圆心,SKIPIF1<0为半径画圆,当SKIPIF1<0在SKIPIF1<0的下方与SKIPIF1<0相切时,SKIPIF1<0的值最小,可得四边形SKIPIF1<0是正方形,在SKIPIF1<0中SKIPIF1<0SKIPIF1<0,然后根据三角形的面积公式即可判断④.【详解】解:∵SKIPIF1<0和SKIPIF1<0是以点SKIPIF1<0为直角顶点的等腰直角三角形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,故①正确;设SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故②正确;当点SKIPIF1<0在SKIPIF1<0的延长线上时,如图所示
∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,故③正确;④如图所示,以SKIPIF1<0为圆心,SKIPIF1<0为半径画圆,
∵SKIPIF1<0,∴当SKIPIF1<0在SKIPIF1<0的下方与SKIPIF1<0相切时,SKIPIF1<0的值最小,SKIPIF1<0∴四边形SKIPIF1<0是矩形,又SKIPIF1<0,∴四边形SKIPIF1<0是正方形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0取得最小值时,SKIPIF1<0SKIPIF1<0∴SKIPIF1<0故④正确,故选:D.【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.2.如图,在矩形纸片ABCD中,SKIPIF1<0,SKIPIF1<0,点E是AB的中点,点F是AD边上的一个动点,将SKIPIF1<0沿EF所在直线翻折,得到SKIPIF1<0,则SKIPIF1<0的长的最小值是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【详解】以点E为圆心,AE长度为半径作圆,连接CE,当点SKIPIF1<0在线段CE上时,SKIPIF1<0的长取最小值,如图所示,根据折叠可知:SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值SKIPIF1<0.故选D.3.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则SKIPIF1<0的最小值是()【答案】B【详解】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA=SKIPIF1<0=2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2SKIPIF1<0或-2SKIPIF1<0(舍弃),∴BE=2a=4SKIPIF1<0,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4SKIPIF1<0(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴SKIPIF1<0,∴DH=SKIPIF1<0BD,∴CD+SKIPIF1<0BD=CD+DH,∴CD+DH≥CM,∴CD+SKIPIF1<0BD≥4SKIPIF1<0,∴CD+SKIPIF1<0BD的最小值为4SKIPIF1<0.故选B.4.如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.8【答案】B【详解】如图,设⊙O与AC相切于点D,连接OD,作SKIPIF1<0垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∵点O是AB的三等分点,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵⊙O与AC相切于点D,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴MN最小值为SKIPIF1<0,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值SKIPIF1<0,SKIPIF1<0,∴MN长的最大值与最小值的和是6.故选B.6.(2023·山东东营·统考中考真题)如图,正方形SKIPIF1<0的边长为4,点SKIPIF1<0,SKIPIF1<0分别在边SKIPIF1<0,SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,连接SKIPIF1<0,分别交SKIPIF1<0,SKIPIF1<0于点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是线段SKIPIF1<0上的一个动点,过点SKIPIF1<0作SKIPIF1<0垂足为SKIPIF1<0,连接SKIPIF1<0,有下列四个结论:①SKIPIF1<0垂直平分SKIPIF1<0;②SKIPIF1<0的最小值为SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正确的是(
)
A.①② B.②③④ C.①③④ D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明SKIPIF1<0,通过等量转化即可求证SKIPIF1<0,利用角平分线的性质和公共边即可证明SKIPIF1<0,从而推出①的结论;利用①中的部分结果可证明SKIPIF1<0推出SKIPIF1<0,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出SKIPIF1<0和SKIPIF1<0长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出SKIPIF1<0的最小值,从而证明②不对.【详解】解:SKIPIF1<0为正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0,故①正确.由①可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由①可知SKIPIF1<0,SKIPIF1<0.故③正确.SKIPIF1<0为正方形,且边长为4,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0.由①可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由图可知,SKIPIF1<0和SKIPIF1<0等高,设高为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故④不正确.由①可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0关于线段SKIPIF1<0的对称点为SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0最小即为SKIPIF1<0,如图所示,
由④可知SKIPIF1<0的高SKIPIF1<0即为图中的SKIPIF1<0,SKIPIF1<0.故②不正确.综上所述,正确的是①③.故选:D.【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.7.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【详解】解:如图,∵将△ABG绕点B逆时针旋转60°得到△EBF,∴BE=AB=BC,BF=BG,EF=AG,∴△BFG是等边三角形.∴BF=BG=FG,.∴AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,∴当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,过E点作EF⊥BC交CB的延长线于F,∴∠EBF=180°-120°=60°,∵BC=4,∴BF=2,EF=2SKIPIF1<0,在Rt△EFC中,∵EF2+FC2=EC2,∴EC=4SKIPIF1<0.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG,∴EF=SKIPIF1<0CE=SKIPIF1<0,故选:D.8.(2023·浙江台州·统考中考真题)如图,SKIPIF1<0的圆心O与正方形的中心重合,已知SKIPIF1<0的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为(
).
A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】设正方形四个顶点分别为SKIPIF1<0,连接SKIPIF1<0并延长,交SKIPIF1<0于点SKIPIF1<0,由题意可得,SKIPIF1<0的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.【详解】解:设正方形四个顶点分别为SKIPIF1<0,连接SKIPIF1<0并延长,交SKIPIF1<0于点SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0,如下图:
则SKIPIF1<0的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:SKIPIF1<0,SKIPIF1<0由勾股定理可得:SKIPIF1<0,∴SKIPIF1<0,故选:D.【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.9.(2023·四川泸州·统考中考真题)如图,SKIPIF1<0,SKIPIF1<0是正方形SKIPIF1<0的边SKIPIF1<0的三等分点,SKIPIF1<0是对角线SKIPIF1<0上的动点,当SKIPIF1<0取得最小值时,SKIPIF1<0的值是___________.
【答案】SKIPIF1<0【分析】作点F关于SKIPIF1<0的对称点SKIPIF1<0,连接SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,此时SKIPIF1<0取得最小值,过点SKIPIF1<0作SKIPIF1<0的垂线段,交SKIPIF1<0于点K,根据题意可知点SKIPIF1<0落在SKIPIF1<0上,设正方形的边长为SKIPIF1<0,求得SKIPIF1<0的边长,证明SKIPIF1<0,可得SKIPIF1<0,即可解答.【详解】解:作点F关于SKIPIF1<0的对称点SKIPIF1<0,连接SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0的垂线段,交SKIPIF1<0于点K,
由题意得:此时SKIPIF1<0落在SKIPIF1<0上,且根据对称的性质,当P点与SKIPIF1<0重合时SKIPIF1<0取得最小值,设正方形SKIPIF1<0的边长为a,则SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,SKIPIF1<0当SKIPIF1<0取得最小值时,SKIPIF1<0的值是为SKIPIF1<0,故答案为:SKIPIF1<0.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.10.(2023·辽宁·统考中考真题)如图,线段SKIPIF1<0,点SKIPIF1<0是线段SKIPIF1<0上的动点,将线段SKIPIF1<0绕点SKIPIF1<0顺时针旋转SKIPIF1<0得到线段SKIPIF1<0,连接SKIPIF1<0,在SKIPIF1<0的上方作SKIPIF1<0,使SKIPIF1<0,点SKIPIF1<0为SKIPIF1<0的中点,连接SKIPIF1<0,当SKIPIF1<0最小时,SKIPIF1<0的面积为___________.
【答案】SKIPIF1<0【分析】连接SKIPIF1<0,SKIPIF1<0交于点P,由直角三角形的性质及等腰三角形的性质可得SKIPIF1<0垂直平分SKIPIF1<0,SKIPIF1<0为定角,可得点F在射线SKIPIF1<0上运动,当SKIPIF1<0时,SKIPIF1<0最小,由含30度角直角三角形的性质即可求解.【详解】解:连接SKIPIF1<0,SKIPIF1<0交于点P,如图,∵SKIPIF1<0,点SKIPIF1<0为SKIPIF1<0的中点,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等边三角形,∴SKIPIF1<0;∵线段SKIPIF1<0绕点SKIPIF1<0顺时针旋转SKIPIF1<0得到线段SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0垂直平分SKIPIF1<0,SKIPIF1<0,∴点F在射线SKIPIF1<0上运动,∴当SKIPIF1<0时,SKIPIF1<0最小,此时SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴由勾股定理得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;
故答案为:SKIPIF1<0.【点睛】本题考查了等腰三角形性质,含30度直角三角形的性质,斜边中线性质,勾股定理,线段垂直平分线的判定,勾股定理,旋转的性质,确定点F的运动路径是关键与难点.11.如图,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0内部的一个动点,且满足SKIPIF1<0,则线段SKIPIF1<0长的最小值为________.【答案】2:【详解】∵∠PAB+∠PBA=90°∴∠APB=90°∴点P在以AB为直径的弧上(P在△ABC内)设以AB为直径的圆心为点O,如图接OC,交☉O于点P,此时的PC最短∵AB=6,∴OB=3∵BC=4∴SKIPIF1<0∴PC=5-3=212.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG最小值,可以将F点看成是由点B向点A运动,由此作出G点轨迹:考虑到F点轨迹是线段,故G点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G点在SKIPIF1<0位置,最终G点在SKIPIF1<0位置(SKIPIF1<0不一定在CD边),SKIPIF1<0即为G点运动轨迹.CG最小值即当CG⊥SKIPIF1<0的时候取到,作CH⊥SKIPIF1<0于点H,CH即为所求的最小值.根据模型可知:SKIPIF1<0与AB夹角为60°,故SKIPIF1<0⊥SKIPIF1<0.过点E作EF⊥CH于点F,则HF=SKIPIF1<0=1,CF=SKIPIF1<0,所以CH=SKIPIF1<0,因此CG的最小值为SKIPIF1<0.13.如图,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0是矩形SKIPIF1<0内一动点,且SKIPIF1<0,则SKIPIF1<0的最小值为_____.【答案】SKIPIF1<0【详解】SKIPIF1<0为矩形,SKIPIF1<0又SKIPIF1<0SKIPIF1<0点SKIPIF1<0到SKIPIF1<0的距离与到SKIPIF1<0的距离相等,即点SKIPIF1<0线段SKIPIF1<0垂直平分线SKIPIF1<0上,连接SKIPIF1<0,交SKIPIF1<0与点SKIPIF1<0,此时SKIPIF1<0的值最小,且SKIPIF1<0SKIPIF1<0故答案为:SKIPIF1<014.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是______.【答案】54【详解】解:如图,取AB的中点E,连接CE,PE.
∵∠ACB=90°,∠A=30°,
∴∠CBE=60°,
∵BE=AE,
∴CE=BE=AE,
∴△BCE是等边三角形,
∴BC=BE,
∵∠PBQ=∠CBE=60°,
∴∠QBC=∠PBE,
∵QB=PB,CB=EB,
∴△QBC≌△PBE(SAS),
∴QC=PE,
∴当EP⊥AC时,QC的值最小,
在Rt△AEP中,∵AE=52,∠A=30°,
∴PE=12AE=54,
∴CQ的最小值为故答案为:515.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.【答案】2【分析】作以BD为对称轴作N的对称点N',连接PN',MN',依据PM﹣PN=PM﹣PN'≤MN',可得当P,M,N'三点共线时,取“=”,再求得SKIPIF1<0=SKIPIF1<0,即可得出PM∥AB∥CD,∠CMN'=90°,再根据△N'CM为等腰直角三角形,即可得到CM=MN'=2.【解答】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=SKIPIF1<0AB=SKIPIF1<0,∵O为AC中点,∴AO=OC=SKIPIF1<0,∵N为OA中点,∴ON=SKIPIF1<0,∴ON'=CN'=SKIPIF1<0,∴AN'=SKIPIF1<0,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴SKIPIF1<0=SKIPIF1<0∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.【点评】本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.16.如图,SKIPIF1<0是等边三角形,SKIPIF1<0,N是SKIPIF1<0的中点,SKIPIF1<0是SKIPIF1<0边上的中线,M是SKIPIF1<0上的一个动点,连接SKIPIF1<0,则SKIPIF1<0的最小值是________.【答案】SKIPIF1<0【分析】根据题意可知要求BM+MN的最小值,需考虑通过作辅助线转化BM,MN的值,从而找出其最小值,进而根据勾股定理求出CN,即可求出答案.【解析】解:连接CN,与AD交于点M,连接BM.(根据两点之间线段最短;点到直线垂直距离最短),SKIPIF1<0是SKIPIF1<0边上的中线即C和B关于AD对称,则BM+MN=CN,则CN就是BM+MN的最小值.∵SKIPIF1<0是等边三角形,SKIPIF1<0,N是SKIPIF1<0的中点,
∴AC=AB=6,AN=SKIPIF1<0AB=3,SKIPIF1<0,∴SKIPIF1<0.即BM+MN的最小值为SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.17.如图,在中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是.【分析】首先对问题作变式2AD+3BD=SKIPIF1<0,故求SKIPIF1<0最小值即可.考虑到D点轨迹是圆,A是定点,且要求构造SKIPIF1<0,条件已经足够明显.当D点运动到AC边时,DA=3,此时在线段CD上取点M使得DM=2,则在点D运动过程中,始终存在SKIPIF1<0.问题转化为DM+DB的最小值,直接连接BM,BM长度的3倍即为本题答案.18.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为_____.【答案】SKIPIF1<0【解析】【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.【详解】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=SKIPIF1<0AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2SKIPIF1<0,GF=SKIPIF1<0,OF=3SKIPIF1<0,∴ME≥OF﹣OM=3SKIPIF1<0﹣2,∴当O,M,E共线时,ME的值最小,最小值为3SKIPIF1<0﹣2.【点睛】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.19.如图,四边形SKIPIF1<0是菱形,SKIPIF1<0B=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.【答案】SKIPIF1<0【详解】将△BMN绕点B顺时针旋转60度得到△BNE,∵BM=BN,∠MBN=∠CBE=60°,∴MN=BM∵MC=NE∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,∴BH=SKIPIF1<0AB=3,AH=SKIPIF1<0BH=SKIPIF1<0,∴AE=2AH=SKIPIF1<0.故答案为SKIPIF1<0.20.如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把SKIPIF1<0沿PE折叠,得到SKIPIF1<0,连接CF.若AB=10,BC=12,则CF的最小值为_____.【答案】8【解析】【分析】点F在以E为圆心、EA为半径的圆上运动,当E、F、C共线时时,此时FC的值最小,根据勾股定理求出CE,再根据折叠的性质得到BE=EF=5即可.【详解】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=SKIPIF1<0=SKIPIF1<0=13,∴CF=CE﹣EF=13﹣5=8.故答案为8.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.21.如图所示,SKIPIF1<0,点SKIPIF1<0为SKIPIF1<0内一点,SKIPIF1<0,点SKIPIF1<0分别在SKIPIF1<0上,求SKIPIF1<0周长的最小值_____.【答案】SKIPIF1<0周长的最小值为8【详解】如图,作P关于OA、OB的对称点SKIPIF1<0,连结SKIPIF1<0、SKIPIF1<0,SKIPIF1<0交OA、OB于M、N,此时SKIPIF1<0周长最小,根据轴对称性质可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0为等边三角形,SKIPIF1<0即SKIPIF1<0周长的最小值为8.22.(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,SKIPIF1<0,SKIPIF1<0分别是斜边SKIPIF1<0,SKIPIF1<0的中点,SKIPIF1<0.
(1)将SKIPIF1<0绕顶点SKIPIF1<0旋转一周,请直接写出点SKIPIF1<0,SKIPIF1<0距离的最大值和最小值;(2)将SKIPIF1<0绕顶点SKIPIF1<0逆时针旋转SKIPIF1<0(如图SKIPIF1<0),求SKIPIF1<0的长.【答案】(1)最大值为SKIPIF1<0,最小值为SKIPIF1<0(2)SKIPIF1<0【分析】(1)根据直角三角形斜边上的中线,得出SKIPIF1<0的值,进而根据题意求得最大值与最小值即可求解;(2)过点SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延长线于点SKIPIF1<0,根据旋转的性质求得SKIPIF1<0,进而得出SKIPIF1<0,进而可得SKIPIF1<0,勾股定理解SKIPIF1<0,即可求解.【详解】(1)解:依题意,SKIPIF1<0,SKIPIF1<0,当SKIPIF1<0在SKIPIF1<0的延长线上时,SKIPIF1<0的距离最大,最大值为SKIPIF1<0,当SKIPIF1<0在线段SKIPIF1<0上时,SKIPIF1<0的距离最小,最小值为SKIPIF1<0;
(2)解:如图所示,过点SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延长线于点SKIPIF1<0,
∵SKIPIF1<0绕顶点SKIPIF1<0逆时针旋转SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.23.在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=SKIPIF1<0;(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;①把图形补充完整(无需写画法);②求SKIPIF1<0的取值范围;(2)如图2,求BE+AE+DE的最小值.【答案】(1)①补图见解析;②SKIPIF1<0;(2)SKIPIF1<0【详解】(1)①如图△DCF即为所求;②∵四边形ABCD是正方形,∴BC=AB=2SKIPIF1<0,∠B=90°,∠DAE=∠ADC=45°,∴AC=SKIPIF1<0=SKIPIF1<0AB=4,∵△ADE绕点D逆时针旋转90°得到△DCF,∴∠DCF=∠DAE=45°,AE=CF,∴∠ECF=∠ACD+∠DCF=90°,设AE=CF=x,EF2=y,则EC=4−x,∴y=(4−x)2+x2=2x2−8x+160(0<x≤4).即y=2(x−2)2+8,∵2>0,∴x=2时,y有最小值,最小值为8,当x=4时,y最大值=16,∴8≤EF2≤16.(2)如图中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H.由旋转的性质可知,△AEG是等边三角形,∴AE=EG,∵DF≤FG+EG+DE,BE=FG,∴AE+BE+DE的最小值为线段DF的长.在Rt△AFH中,∠FAH=30°,AB=SKIPIF1<0=AF,∴FH=SKIPIF1<0AF=SKIPIF1<0,AH=SKIPIF1<0=SKIPIF1<0,在Rt△DFH中,DF=SKIPIF1<0=SKIPIF1<0,∴BE+AE+ED的最小值为SKIPIF1<0.24.(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当SKIPIF1<0的三个内角均小于SKIPIF1<0时,如图1,将SKIPIF1<0绕,点C顺时针旋转SKIPIF1<0得到SKIPIF1<0,连接SKIPIF1<0,
由SKIPIF1<0,可知SKIPIF1<0为①三角形,故SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,由②可知,当B,P,SKIPIF1<0,A在同一条直线上时,SKIPIF1<0取最小值,如图2,最小值为SKIPIF1<0,此时的P点为该三角形的“费马点”,且有SKIPIF1<0③;已知当SKIPIF1<0有一个内角大于或等于SKIPIF1<0时,“费马点”为该三角形的某个顶点.如图3,若SKIPIF1<0,则该三角形的“费马点”为④点.(2)如图4,在SKIPIF1<0中,三个内角均小于SKIPIF1<0,且SKIPIF1<0,已知点P为SKIPIF1<0的“费马点”,求SKIPIF1<0的值;
(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知SKIPIF1<0.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/SKIPIF1<0,a元/SKIPIF1<0,SKIPIF1<0元/SKIPIF1<0,选取合适的P的位置,可以使总的铺设成本最低为___________元.(结果用含a的式子表示)【答案】(1)①等边;②两点之间线段最短;③SKIPIF1<0;④A.(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)根据旋转的性质和两点之间线段最短进行推理分析即可得出结论;(2)根据(1)的方法将SKIPIF1<0绕,点C顺时针旋转SKIPIF1<0得到SKIPIF1<0,即可得出可知当B,P,SKIPIF1<0,A在同一条直线上时,SKIPIF1<0取最小值,最小值为SKIPIF1<0,在根据SKIPIF1<0可证明SKIPIF1<0,由勾股定理求SKIPIF1<0即可,(3)由总的铺设成本SKIPIF1<0,通过将SKIPIF1<0绕,点C顺时针旋转SKIPIF1<0得到SKIPIF1<0,得到等腰直角SKIPIF1<0,得到SKIPIF1<0,即可得出当B,P,SKIPIF1<0,A在同一条直线上时,SKIPIF1<0取最小值,即SKIPIF1<0取最小值为SKIPIF1<0,然后根据已知和旋转性质求出SKIPIF1<0即可.【详解】(1)解:∵SKIPIF1<0,∴SKIPIF1<0为等边三角形;∴SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,由两点之间线段最短可知,当B,P,SKIPIF1<0,A在同一条直线上时,SKIPIF1<0取最小值,最小值为SKIPIF1<0,此时的P点为该三角形的“费马点”,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴三个顶点中,顶点A到另外两个顶点的距离和最小.又∵已知当SKIPIF1<0有一个内角大于或等于SKIPIF1<0时,“费马点”为该三角形的某个顶点.∴该三角形的“费马点”为点A,故答案为:①等边;②两点之间线段最短;③SKIPIF1<0;④SKIPIF1<0.(2)将SKIPIF1<0绕,点C顺时针旋转SKIPIF1<0得到SKIPIF1<0,连接SKIPIF1<0,由(1)可知当B,P,SKIPIF1<0,A在同一条直线上时,SKIPIF1<0取最小值,最小值为SKIPIF1<0,
∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0∴SKIPIF1<0,由旋转性质可知:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0最小值为SKIPIF1<0,(3)∵总的铺设成本SKIPIF1<0∴当SKIPIF1<0最小时,总的铺设成本最低,将SKIPIF1<0绕,点C顺时针旋转SKIPIF1<0得到SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0由旋转性质可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,当B,P,SKIPIF1<0,A在同一条直线上时,SKIPIF1<0取最小值,即SKIPIF1<0取最小值为SKIPIF1<0,
过点SKIPIF1<0作SKIPIF1<0,垂足为SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0的最小值为SKIPIF1<0总的铺设成本SKIPIF1<0(元)故答案为:SKIPIF1<0【点睛】本题考查了费马点求最值问题,涉及到的知识点有旋转的性质,等边三角形的判定与性质,勾股定理,以及两点之间线段最短等知识点,读懂题意,利用旋转作出正确的辅助线是解本题的关键.25.(2023·重庆·统考中考真题)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0为线段SKIPIF1<0上一动点,连接SKIPIF1<0.
(1)如图1,若SKIPIF1<0,SKIPIF1<0,求线段SKIPIF1<0的长.(2)如图2,以SKIPIF1<0为边在SKIPIF1<0上方作等边SKIPIF1<0,点SKIPIF1<0是SKIPIF1<0的中点,连接SKIPIF1<0并延长,交SKIPIF1<0的延长线于点SKIPIF1<0.若SKIPIF1<0,求证:SKIPIF1<0.(3)在SKIPIF1<0取得最小值的条件下,以SKIPIF1<0为边在SKIPIF1<0右侧作等边SKIPIF1<0.点SKIPIF1<0为SKIPIF1<0所在直线上一点,将SKIPIF1<0沿SKIPIF1<0所在直线翻折至SKIPIF1<0所在平面内得到SKIPIF1<0.连接SKIPIF1<0,点SKIPIF1<0为SKIPIF1<0的中点,连接SKIPIF1<0,当SKIPIF1<0取最大值时,连接SKIPIF1<0,将SKIPIF1<0沿SKIPIF1<0所在直线翻折至SKIPIF1<0所在平面内得到SKIPIF1<0,请直接写出此时SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)见解析(3)SKIPIF1<0【分析】(1)解SKIPIF1<0,求得SKIPIF1<0,根据SKIPIF1<0即可求解;(2)延长SKIPIF1<0使得SKIPIF1<0,连接SKIPIF1<0,可得SKIPIF1<0,根据SKIPIF1<0,得出SKIPIF1<0四点共圆,则SKIPIF1<0,SKIPIF1<0,得出SKIPIF1<0,结合已知条件得出SKIPIF1<0,可得SKIPIF1<0,即可得证;(3)在SKIPIF1<0取得最小值的条件下,即SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,根据题意得出点SKIPIF1<0在以SKIPIF1<0为圆心,SKIPIF1<0为半径的圆上运动,取SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0,则SKIPIF1<0是SKIPIF1<0的中位线,SKIPIF1<0在半径为SKIPIF1<0的SKIPIF1<0上运动,当SKIPIF1<0取最大值时,即SKIPIF1<0三点共线时,此时如图,过点SKIPIF1<0作SKIPIF1<0于点SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0,交SKIPIF1<0于点SKIPIF1<0,则四边形SKIPIF1<0是矩形,得出SKIPIF1<0是SKIPIF1<0的中位线,同理可得SKIPIF1<0是SKIPIF1<0的中位线,SKIPIF1<0是等边三角形,将SKIPIF1<0沿SKIPIF1<0所在直线翻折至SKIPIF1<0所在平面内得到SKIPIF1<0,则SKIPIF1<0,在SKIPIF1<0中,勾股定理求得SKIPIF1<0,进而即可求解.【详解】(1)解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(2)证明:如图所示,延长SKIPIF1<0使得SKIPIF1<0,连接SKIPIF1<0,
∵SKIPIF1<0是SKIPIF1<0的中点则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0是等边三角形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0四点共圆,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)解:如图所示,
在SKIPIF1<0取得最小值的条件下,即SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 融合教育课件
- 2025-2030全球空气制纯水机行业调研及趋势分析报告
- 2025年全球及中国3-HAP行业头部企业市场占有率及排名调研报告
- 2025年全球及中国阻燃聚乙烯膜行业头部企业市场占有率及排名调研报告
- 2025-2030全球数据安全交换解决方案行业调研及趋势分析报告
- 2025年全球及中国口服固体制剂用冷铝包材行业头部企业市场占有率及排名调研报告
- 2025年全球及中国无缝合金钛管行业头部企业市场占有率及排名调研报告
- 2025-2030全球高纯度2-氯吡啶行业调研及趋势分析报告
- 2025-2030全球地磅测试服务行业调研及趋势分析报告
- 2025-2030全球仓库地板标记胶带行业调研及趋势分析报告
- 2025福建新华发行(集团)限责任公司校园招聘30人高频重点提升(共500题)附带答案详解
- 2024年潍坊护理职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 物流营销(第四版) 课件 第一章 物流营销概述
- 血液灌流流程及注意事项详细图解
- 5A+Chapter+2+Turning+over+a+new+leaf 英语精讲课件
- 相交线教学课件
- 贝克曼梁测定路基路面回弹弯沉
- 机电安装施工质量标准化实施图册
- 西藏自治区建筑与市政工程竣工验收报告
- ge680ct用户学习aw4.6软件手册autobone xpress指南中文
- 2023年高一年级必修二语文背诵篇目
评论
0/150
提交评论