版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年吉林省榆树一中高考仿真模拟数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,若,则的值为()A.1 B. C. D.2.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.3.函数在内有且只有一个零点,则a的值为()A.3 B.-3 C.2 D.-24.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.5.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.6.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是()A.1 B.-3 C.1或 D.-3或7.已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为()A. B. C. D.8.已知定义在上的偶函数,当时,,设,则()A. B. C. D.9.已知向量,则向量在向量方向上的投影为()A. B. C. D.10.年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是()A.月下旬新增确诊人数呈波动下降趋势B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数C.月日至月日新增确诊人数波动最大D.我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值11.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则12.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,且向量与的夹角为_______.14.在三棱锥中,,,两两垂直且,点为的外接球上任意一点,则的最大值为______.15.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.16.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.18.(12分)如图,在三棱柱中,平面ABC.(1)证明:平面平面(2)求二面角的余弦值.19.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.20.(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好3005.开放且包容250合计10001000(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.0500.0100.001k3.8416.63510.82821.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.22.(10分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、.(1)证明:;(2)若的面积,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.2、C【解析】
将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.3、A【解析】
求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,,在单调递增,且,在不存在零点;若,,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.4、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.5、D【解析】
首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.6、D【解析】
由题得,解方程即得k的值.【详解】由题得,解方程即得k=-3或.故答案为:D【点睛】(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2)点到直线的距离.7、D【解析】
根据双曲线的定义可得的边长为,然后在中应用余弦定理得的等式,从而求得离心率.【详解】由题意,,又,∴,∴,在中,即,∴.故选:D.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线的定义把到两焦点距离用表示,然后用余弦定理建立关系式.8、B【解析】
根据偶函数性质,可判断关系;由时,,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,,则,令则,当时,,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.9、A【解析】
投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.10、D【解析】
根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论.【详解】对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确;对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确;对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确;对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误.故选:D.【点睛】本题考查统计图表的应用,考查数据处理能力,属于基础题.11、D【解析】A.若,则或,故A错误;B.若,则或故B错误;C.若,则或,或与相交;D.若,则,正确.故选D.12、B【解析】
延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,,,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
根据向量数量积的定义求解即可.【详解】解:∵向量,且向量与的夹角为,∴||;所以:•()2cos2﹣2=1,故答案为:1.【点睛】本题主要考查平面向量的数量积的定义,属于基础题.14、【解析】
先根据三棱锥的几何性质,求出外接球的半径,结合向量的运算,将问题转化为求球体表面一点到外心距离最大的问题,即可求得结果.【详解】因为两两垂直且,故三棱锥的外接球就是对应棱长为2的正方体的外接球.且外接球的球心为正方体的体对角线的中点,如下图所示:容易知外接球半径为.设线段的中点为,故可得,故当取得最大值时,取得最大值.而当在同一个大圆上,且,点与线段在球心的异侧时,取得最大值,如图所示:此时,故答案为:.【点睛】本题考查球体的几何性质,几何体的外接球问题,涉及向量的线性运算以及数量积运算,属综合性困难题.15、【解析】
先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.16、0【解析】
利用等差中项以及等比数列的前项和公式即可求解.【详解】由,,是等差数列可知因为,所以,故答案为:0【点睛】本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析(3)证明见解析【解析】
(1)由是递增数列,得,由此能求出的前项和.(2)推导出,,由此能证明的“极差数列”仍是.(3)证当数列是等差数列时,设其公差为,,是一个单调递增数列,从而,,由,,,分类讨论,能证明若数列是等差数列,则数列也是等差数列.【详解】(1)解:∵无穷数列的前项中最大值为,最小值为,,,是递增数列,∴,∴的前项和.(2)证明:∵,,∴,∴,∵,∴,∴的“极差数列”仍是(3)证明:当数列是等差数列时,设其公差为,,根据,的定义,得:,,且两个不等式中至少有一个取等号,当时,必有,∴,∴是一个单调递增数列,∴,,∴,∴,∴是等差数列,当时,则必有,∴,∴是一个单调递减数列,∴,,∴,∴.∴是等差数列,当时,,∵,中必有一个为0,根据上式,一个为0,为一个必为0,∴,,∴数列是常数数列,则数列是等差数列.综上,若数列是等差数列,则数列也是等差数列.【点睛】本小题主要考查新定义数列的理解和运用,考查等差数列的证明,考查数列的单调性,考查化归与转化的数学思想方法,属于难题.18、(1)证明见解析(2)【解析】
(1)证明平面即平面平面得证;(2)分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,再利用向量方法求二面角的余弦值.【详解】(1)证明:因为平面ABC,所以因为.所以.即又.所以平面因为平面.所以平面平面(2)解:由题可得两两垂直,所以分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,则,所以设平面的一个法向量为,由.得令,得又平面,所以平面的一个法向量为.所以二面角的余弦值为.【点睛】本题主要考查空间几何位置关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平.19、(1);(2).【解析】
(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有,解得;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,①当在上是单调增函数,则,解得,检验符合;②当在上是单调减函数,则,解得,在上不是单调函数,不符合题意。故满足在区间上是闭函数只有。【点睛】本题主要考查学生的应用意识,利用所学知识分析解决新定义问题。20、(1)(万)(2)(3)填表见解析;有的把握认为性别与“自然环境”或“人文环境”的选择有关【解析】
(1)在1000个样本中选择“创业氛围好”来A城市发展的有300个,根据频率公式即可求得结果.(2)由分层抽样的知识可得,抽取6人中,4人选择“森林城市,空气清新”,2人选择“降水充足,气候怡人”求出对应的基本事件数,即可求得结果.(3)计算的值,对照临界值表可得答案.【详解】(1)(万)(2)从所抽取选择“自然环境”作为来A城市发展理由的300人中,利用分层抽样的方法抽取6人,其中4人是选择“森林城市,空气清新”,2人是选择“降水充足,气候怡人”.记事件A为选出的3人中至少有2人选择“森林城市,空气清新”,则,.(3)列联表如下自然环境人文环境
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《压力焊与钎焊》教学大纲
- 教科版五年级科学教案
- 玉溪师范学院《社会学》2021-2022学年第一学期期末试卷
- 2023年油气钻采服务项目成效分析报告
- 2024年粘结稀土永磁材料项目成效分析报告
- 2019粤教版 高中美术 选择性必修4 设计《第一单元 传情达意的视觉传达设计》大单元整体教学设计2020课标
- 差异化劳动合同
- 餐饮技术入股协议书范本合同
- 财务机构代理出口退税合同范本
- 补充协议取消原合同部分条款模板
- 信用证条款编号和中英文对照
- 电脑供货方案、售后服务方案
- 系统架构评估报告
- 破碎锤施工方案
- 眼内炎病例讨论
- 传承红色基因争做时代新人主题班会六篇
- 市政工程交通导行施工方案
- 踝关节损伤的护理课件
- 社区综合养老服务中心委托运营协议
- 关于进入看守所的申请书
- 《汽车发动机电控技术》习题及答案
评论
0/150
提交评论