统计专业英语教案 常用统计学术语复习_第1页
统计专业英语教案 常用统计学术语复习_第2页
统计专业英语教案 常用统计学术语复习_第3页
统计专业英语教案 常用统计学术语复习_第4页
统计专业英语教案 常用统计学术语复习_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、统计学术语

population总体

sample样本

census普查

sampling抽样

quantitative量的

qualitative质的

discrete离散的

continuous连续的

populationparameters总体参数

samplestatistics样本统计量

descriptivestatistics叙述统计学

抽样调查samplingsurvey

简单随机抽样simplerandomsampling

系统抽样systematicsampling

分层抽样stratifiedsampling

整群抽样clustersampling

多级抽样multistagesampling

实验设计DesignofExperiment)

参数Parameter

Statistics统计学

Statisticaltable统计表

Statisticalchart统计图

Piechart圆饼图

Stem-and-leafdisplay茎叶图

Histogram直方图

BarChart长条图

Polygon多边形

Expectation期望值

Mode众数

Mean平均数

Variance变异数

Standarddeviation标准差

Standarderror标准误

Inferentialstatistics推论统计学

Pointestimation点估计

Intervalestimation区间估计

Confidenceinterval置信区间

Confidencecoefficient置信系数

Regressionanalysis回归分析

Analysisofvariance变异数分析

Correlationcoefficient相关系数

Reliability信度

Validity效度

Discreteuniformdensities离散的均匀密度

Binomialdensities二项密度

Hypergeometricdensities超几何密度

Poissondensities卜松密度

Geometricdensities几何密度

Negativebinomialdensities负二项密度

Continuousuniformdensities连续均匀密度

Normaldensities正态密度(分布)

Exponentialdensities指数密度

Gammadensities伽玛密度

Betadensities贝他密度

Multivariateanalysis多变量分析

Principalcomponents主因子分析

Discriminationanalysis判另U分析

Clusteranalysis群集分析

Factoranalysis因素分析

Survivalanalysis存活分析

Timeseriesanalysis时间序列分析

Linearmodels线性模式

Probabilitytheory概率率论

Statisticalinference统计推论

Stochasticprocesses随机过程

Decisiontheory决策理论

Discreteanalysis离散分析

Mathematicalstatistics数理统计

相关系数:Correlationcoefficient

算术平均数(ArithmeticMean)

元素(Element)邮寄问卷法(MailInterview)

封闭式问题(CloseQuestion)

电话访问法(TelephoneInterview)

市场调查(MarketingResearch)

决策树(DecisionTrees)

容忍误差(Toleratederro)

数据挖掘(DataMining)

初级资料(PrimaryData)

趋势分析(TrendAnalysis)

神经网络(NeuralNetwork)

人员访问法(Interview)判别分析法(DiscriminantAnalysis)

集群分析法(clusteranalysis)规则归纳法(RulesInduction)

内容效度(ContentValidity)判断抽样(JudgmentSampling)

二、阅读资料

Frequency

Whencollectinginformation,forinstancethecolorofcarsinacar

park,therewillberepeatedexamplesofparticularcolors.Theremaybe

fouryellowcars,13redcars,eightbluecarsand20carsofothercolors.

Theinformationisqualitative.Thenumberofcarsofeachcoloristhe

frequencyofobservationofthatitemofinformation.

Inevitableingatheringanyinformationtherewillbeacollectionof

frequenciesassociatedwithitemsofdata.Thefrequenciesarenotonly

thedata,theytellussomethingaboutthedistributionofthedata.

Presentationofdata(1)

Qualitativedatamaybepresentedinafrequencytablesuchasthe

onebelow.

Amongthemanyconsiderations,itwouldbeimportanttohavesome

ideasofwhatatypicaltimewaslikelytobe,andthelikelyrangeoftimes.

Thisinformationisnecessarysothatanappropriatetimingdevicecanbe

selected.Therewouldbelittlepointintryingtouseawatch'sminute

handoranelectronictimercapableofrecordingto1/1000ofasecond.It

isalsounlikelytobenecessarytorecordtimesaslongasanhour,butthe

timerneedstobecapableofrecordingmorethanafewseconds.

Therearetwomeasuresrepresentativeofdatawhichmaybeuseful

incaselikethis-onerepresentingthe'typicalvalue5andanotherwhich

indicatesthe'sortofrangeofvalue5likelytobefound.Instatisticalterms,

thesearemeasuresoflocationoraverageanddispersionorspread.

Lifewouldbesimpleiftherewerejustoneofeach,orevenanideal

measureofeachquality.Unfortunately,thisisnotthecase.Thereare

manytypesofaverageandseveralkindsofspread.Inthischapterwe

shallconcentrateonaverages.

Mode

Themodeisthemostcommonlyoccurringvalueoritemofdate,or,

inotherwords,theonethatappearsmostfrequently.Inthecontextofthe

dataunderconsideration,themostcommonlyoccurringvalueis9

seconds.Isitreasonable,though,toconsider9secondsasbeingtypical

ofthetimetakentopassthroughthiscontinentalmotorwaytoll?

Almostcertainlynot!Itmanybemoreappropriatetoconsiderthemodal

class.Referringbacktothediagram,the1-branchhasthegreatest

frequency.Hence,itwouldbereasonabletosaythatthemodeisthetime

between20and30seconds.Thisisthelongestbranchinthe

stem-and-leafdiagram.

Themodalclassmaybetheclasswiththehighestfrequencywhen

thedataarepresentedinafrequencytable,butitmaynot!

Theprominenceofthe20-30secondsclassisapparent.Themethod

assumesthatthemodedividesthemodalclassinthesameratioasthe

increaseinfrequencydensitytothedecreaseinfrequencydensity.Inthe

frequencytable,thisratiois(9-7):(9-6),whichisequivalentto2:3.Hence

themodedividesthemodalclassintheratio2:3,andanestimateofthe

modeis24.Weneedtoaskourselves,howvalidisthisprocess?

WhereWisthewidthofthemodalclass,andxisitslowerbound.

Intheexample,1=2,D=3,W=10andx=20.

Hereestimateofthemode=20+(2/5)*10=24.

Median

Step-by-step

Thecentreormiddleitemofthedataisknownasthemedian.One

approachtoidentifyingthemedianisto:

■placethedatainorder

■locatethemiddleitem

■hence,identifythemedian

Supposeweneedtoidentifythemedianofthefollowingcollection

ofdata.

8,15,7,10,4,3,8,6,5,7,8

Placingthedatainorderyields:

3,4,5,6,7,7,8,8,8,10,15

Themiddleitemistheonewhichisequidistantfromtheextreme

values.

Sincethereareelevenitemsofdata,themiddleisthesixthfrom

eitherend.

Eventotal

Forthecollectionabove,thetotalnumberofitemsisodd,whichled

tothemedianbeingoneoftheactualrecordeditemsofdata.Inthe

followingcase,thetotalisanevennumber,whichmeansthecentervalue

ofthedataismidwaybetweentwooftherecordeditems.

4,5,0,3,9,4,8,9,9,1

Orderingthedatagives:

0,1,3,4,4,5,8,9,9,9

andlocatingthemiddlevalueyields:

Groupedfrequencytable

Ifthedataarepresentedinafrequencytable,thenitisonlypossible

toobtainanestimateofthemedian.Thisisdoneeithergraphicallyor

arithmetically.

Thecumulativefrequenciesforthefrequencytableisgivenbelow.

TimeFrequencyCumulativefrequency

[0,10)44

[10,20)711

[20,30)920

[30,40)626

[40,50)531

[50,60)334

[60,120)943

Groupedfrequencytable

Whatinformationcanbegainedfromthecumulative

frequency?

Considerthecumulativefrequencyof20.thistellsusthatthereare

20itemsofdatawithvalueslessthan30.Similarly,thecumulative

frequencyof34indicatesthatthereare34itemswhicharelessthan60.

Thereisanaturallinkbetweenanygivencumulativefrequencyandthe

upperboundofthecorrespondingclass.Hence,whenitcomesto

constructingacumulativefrequencygraph,thepointstobeplottedcome

fromthefollowingseriesdata.

Range

Perhapsthemostsimplemeasureofspreadisthedifferencebetween

thelargestandsmallestitemsofdatai.e.thedifferencebetweenthe

extremes.Thisistherange.Inthecaseofthemotorwaytolltimesthe

longesttimerecordedwas118secondsandtheshortesttimewas9

seconds,hencetherangeofthesedataisgivenby:

range=118-9-109seconds

Thismeasureofspreaddosenottakeintoaccountanythingabout

thedistributionofthedataotherthantheextremes.Neitherisitvery

reliableortypical.Why?

Quartilespread

Amoretrustworthymeasureistherangeofthemiddlehalfofthe

data.Toidentifythisrangeweneedtofindtheitemsofdatawhichare

positionedhalfwaybetweentheextremesandthemedian.Takethecase

ofthedatafollowing:

Ingeneral,theitemsofdatalyingmidwaybetweenthemedianand

theextremesareknowasthequartiles.Itismoreusualtorefertothemas

thefirstorlowerquartileandthethirdorupperquartile.Thedifference

betweenthemiscalledtheinterquartilerange(IQR)orquartilespread

(QS)

Standarddeviation

Theinterquartilerangemeasuresthespreadofthemiddlehalfofthe

dataandiscloselylinkedtothemedian.Wecandefineameasureof

dispersion,takingintoaccountallthedata,whichislinkedinsteadtothe

mean.

Deviationfromthemean

Supposetheitemsofdata:18,20,21,22,24.

Themeanofthecollectiondatais21,hencethedeviationfromthe

meanare:-3,-1,0,1,3,andtheaverage(ormean)ofthisdeviationsis

theirsumdividedbythenumberofitems.Thisc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论