版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
班级姓名学号分数第二十八章锐角三角函数(B卷·能力提升练)(时间:60分钟,满分:100分)一.选择题(本题共10小题,每小题3分,共30分。)1.(2022·内蒙古通辽·中考真题)如图,由边长为1的小正方形构成的网格中,点,,都在格点上,以为直径的圆经过点,,则的值为(
)A. B. C. D.2.(2022·广西贵港·中考真题)如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若的顶点均是格点,则的值是(
)A. B. C. D.3.(2022·辽宁营口·中考真题)如图,点A,B,C,D在上,,则的长为(
)A. B.8 C. D.44.(2022·四川乐山·中考真题)如图,在中,,,点D是AC上一点,连接BD.若,,则CD的长为(
)A. B.3 C. D.25.(2022·贵州毕节·中考真题)计算的结果,正确的是(
)A. B. C. D.6.(2022·广西·中考真题)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为,则高BC是(
)A.米 B.米 C.米 D.米7.(2022·贵州黔东南·中考真题)如图,、分别与相切于点、,连接并延长与交于点、,若,,则的值为(
)A. B. C. D.8.(2022·陕西·中考真题)如图,是的高,若,,则边的长为(
)A. B. C. D.9.(2022·湖南湘潭·中考真题)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,为直角三角形中的一个锐角,则(
)A.2 B. C. D.10.(2022·天津·中考真题)的值等于(
)A.2 B.1 C. D.二.填空题(本题共8小题,每小题3分,共24分。)11.(2022·宁夏·中考真题)2022年4月16日9时56分,神舟十三号载人飞船返回舱在东风着陆场成功着陆,某一时刻观测点D测得返回舱底部C的仰角∠CDE=45°,降落伞底面圆A点处的仰角∠ADE=46°12′.已知半径OA长14米,拉绳AB长50米,返回舱高度BC为2米,这时返回舱底部离地面的高度CE约为______米(精确到米).(参考数据:,,)12.(2022·四川·巴中市教育科学研究所中考真题)一艘轮船位于灯塔的南偏东方向,距离灯塔30海里的处,它沿北偏东方向航行一段时间后,到达位于灯塔的北偏东方向上的处,此时与灯塔的距离约为________海里.(参考数据:,,)13.(2022·湖北黄石·中考真题)某校数学兴趣小组开展无人机测旗杆的活动:已知无人机的飞行高度为30m,当无人机飞行至A处时,观测旗杆顶部的俯角为30°,继续飞行20m到达B处,测得旗杆顶部的俯角为60°,则旗杆的高度约为________m.(参考数据:,结果按四舍五八保留一位小数)14.(2022·江苏南通·中考真题)如图,B为地面上一点,测得B到树底部C的距离为,在B处放置高的测角仪,测得树顶A的仰角为,则树高为___________m(结果保留根号).15.(2022·山东枣庄·中考真题)北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan∠ABE=_____.16.(2022·湖北荆门·中考真题)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t=_____小时.三.解答题(本题共6小题,共46分。)17.(2022·四川攀枝花·中考真题)第24届冬奥会(也称2022年北京冬奥会)于2022年2月4日至2月20日在中国北京举行,北京成为了历史上第一座既举办过夏奥会又举办过冬奥会的城市.冬奧会上跳台滑雪是一项极为壮观的运动.运动员经过助滑、起跳、空中飞行和着陆,整个动作连贯一致,一气呵成,如图,某运动员穿着滑雪板,经过助滑后,从倾斜角的跳台A点以速度沿水平方向跳出,若忽略空气阻力影响,水平方向速度将保持不变.同时,由于受重力作用,运动员沿竖直方向会加速下落,因此,运动员在空中飞行的路线是抛物线的一部分,已知该运动员在B点着陆,,且.忽略空气阻力,请回答下列问题:(1)求该运动员从跳出到着陆垂直下降了多少m?(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s,求他飞行2s后,垂直下降了多少m?18.(2022·江苏淮安·中考真题)如图,湖边、两点由两段笔直的观景栈道和相连.为了计算、两点之间的距离,经测量得:,,米,求、两点之间的距离.(参考数据:,,,,,)19.(2022·江苏淮安·中考真题)(1)计算:;(2)化简:.【答案】(1);(2)【详解】解:(1)原式;(2)原式.20.(2022·辽宁阜新·中考真题)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度,在居民楼前方有一斜坡,坡长,斜坡的倾斜角为,.小文在点处测得楼顶端的仰角为,在点处测得楼顶端的仰角为(点,,,在同一平面内).21.(20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商丘工学院《传统建筑与风水哲学》2023-2024学年第一学期期末试卷
- 股制合同和合作合同范例
- 煤炭简易销售合同范例
- 白蚂蚁合同范例
- 陕西中医药大学《园林美术》2023-2024学年第一学期期末试卷
- 甲方物业合同范例
- 2024至2030年电动锚机项目投资价值分析报告
- 理发店转让合同范例
- 机械过户合同范例
- 里买购房合同范例
- 电气照明设备相关知识课件
- 妇产科护理学理论知识考核题库与答案
- GB∕T 36681-2018 展览场馆服务管理规范
- 【高清版】GB 19079.1-2013体育场所开放条件与技术要求第1部分:游泳场所
- 【小学语文】人教版五年级上册语文选择题100道
- 压铸过程原理及压铸工艺技术培训
- 巴赫作品 《C大调前奏曲》Prelude in C major,BWV846;J. S. Bach古典吉他谱
- plc课程设计模压机控制
- VDA63过程审核案例
- FP21表说明书
- 【方案】桩基静载检测方案
评论
0/150
提交评论