版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市青岛大附属中学2024届中考数学对点突破模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.110 B.19 C.12.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是3.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.4.下列事件是必然事件的是()A.任意作一个平行四边形其对角线互相垂直B.任意作一个矩形其对角线相等C.任意作一个三角形其内角和为D.任意作一个菱形其对角线相等且互相垂直平分5.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C. D.﹣16.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形
②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2
④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.47.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()A.135° B.115° C.65° D.50°8.估计﹣÷2的运算结果在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和49.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为210.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.菱形 C.平行四边形 D.正五边形二、填空题(共7小题,每小题3分,满分21分)11.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.12.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.13.若不等式组的解集为,则________.14.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.15.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.16.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.17.的算术平方根为______.三、解答题(共7小题,满分69分)18.(10分)2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有人;在被调查者中参加“3科”课外辅导的有人.(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.19.(5分)计算:()-1+()0+-2cos30°.20.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.21.(10分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.22.(10分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).23.(12分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?24.(14分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.考点:概率.2、B【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A.某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B.根据平均数是4求得a的值为2,则方差为[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C.12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.3、C【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.4、B【解析】
必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.【详解】解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.5、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最小的数是0,故选:B.6、C【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.7、B【解析】
由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P=
∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点
P
,连接
PA
、
PB.∵OA=OB
,∴∠OAB=∠OBA=25°
,∴∠AOB=180°−2×25°=130°
,∴∠P=∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键.8、D【解析】
先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.【详解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故选D.【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.9、A【解析】
根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.10、B【解析】
在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】连接OA,作OM⊥AB于点M,∵正六边形ABCDEF的外接圆半径为2cm∴正六边形的半径为2cm,即OA=2cm在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM=cos30°×OA=(cm)故答案为.12、3.6【解析】分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.详解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h4.5×6+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.13、-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.14、5200【解析】设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:解得所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息.15、【解析】
解:设E(x,x),∴B(2,x+2),∵反比例函数(k≠0,x>0)的图象过点B.E.∴x2=2(x+2),,(舍去),,故答案为16、a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17、【解析】
首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.【详解】∵=2,∴的算术平方根为.【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.三、解答题(共7小题,满分69分)18、(1)50,10;(2)见解析.(3)16.8万【解析】
(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为24×=16.8(万).【详解】解:(1)本次被调查的学员共有:15÷30%=50(人),在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:50×10%=5(人),补全的条形统计图如右图所示;(3)24×=16.8(万),答:参与辅导科目不多于2科的学生大约有16.8人.【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.19、4+2.【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【详解】原式=3+1+3-2×=4+2.20、见解析【解析】试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.考点:平行线的性质;全等三角形的判定及性质.21、2【解析】试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.试题解析:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF=OD2-O则CD=2DF=215.考点:垂径定理;勾股定理.22、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).【解析】试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,解得∴二次函数解析式为y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得,解得:∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)∴1<5﹣m<3,解得2<m<4;(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点①若有△PCM∽△BDC,则有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,则有∴CP==3∴PH=3÷=3,若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).考点:二次函数综合题23、(1)小强的头部点E与地面DK的距离约为144.5cm.(2)他应向前9.5cm.【解析】试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《DesignofMachineToolJig》2023-2024学年第一学期期末试卷
- 2025年浙江省安全员A证考试题库
- 牡丹繁育研发观光基地建设项目可行性研究报告-牡丹市场需求持续扩大
- 贵阳人文科技学院《草地植物分子生物学实验》2023-2024学年第一学期期末试卷
- 广州应用科技学院《创新创业论坛》2023-2024学年第一学期期末试卷
- 2025年河北省建筑安全员-C证(专职安全员)考试题库
- 中国农业-高考地理复习
- 《岩体力学性质》课件
- 《心绞痛的家庭急救》课件
- 形式与政策-课程报告
- 《小学生良好书写习惯培养的研究》中期报告
- 2025年四川成都市温江区市场监督管理局选聘编外专业技术人员20人历年管理单位笔试遴选500模拟题附带答案详解
- 手术室发生地震应急预案演练
- 配合、协调、服务方案
- 初中数学新课程标准(2024年版)
- 期末测试卷(一)2024-2025学年 人教版PEP英语五年级上册(含答案含听力原文无听力音频)
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 中华传统文化之戏曲瑰宝学习通超星期末考试答案章节答案2024年
- 装饰装修设备表
- 汉服娃衣创意设计与制作智慧树知到期末考试答案章节答案2024年四川文化产业职业学院
- 广东省中山市2023-2024学年四年级上学期期末数学试卷
评论
0/150
提交评论