山东省青岛市开发区八中学2024届中考数学适应性模拟试题含解析_第1页
山东省青岛市开发区八中学2024届中考数学适应性模拟试题含解析_第2页
山东省青岛市开发区八中学2024届中考数学适应性模拟试题含解析_第3页
山东省青岛市开发区八中学2024届中考数学适应性模拟试题含解析_第4页
山东省青岛市开发区八中学2024届中考数学适应性模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市开发区八中学2024届中考数学适应性模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)2.将某不等式组的解集表示在数轴上,下列表示正确的是()A. B.C. D.3.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=kx(k>0,x>0)的图象经过点C,则A.33B.32C.24.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy5.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米6.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步)1.01.3天数335712在每天所走的步数这组数据中,众数和中位数分别是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.49.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A. B. C. D.10.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,已知,要使,还需添加一个条件,则可以添加的条件是.(只写一个即可,不需要添加辅助线)12.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.13.因式分解:y3﹣16y=_____.14.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.15.把多项式9x3﹣x分解因式的结果是_____.16.不等式组的最大整数解是__________.三、解答题(共8题,共72分)17.(8分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.18.(8分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.19.(8分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使∠DAE=90°,连接CE.探究:如图①,当点D在线段BC上时,证明BC=CE+CD.应用:在探究的条件下,若AB=,CD=1,则△DCE的周长为.拓展:(1)如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为.(2)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.20.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目

频数(人数)

羽毛球

30

篮球

乒乓球

36

排球

足球

12

请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?21.(8分)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于12②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.22.(10分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.23.(12分)综合与探究如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;②求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.如图所示,在中,,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:作BC⊥x轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A′与点B重合,于是可得点A′的坐标.详解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴∴A点坐标为(−4,0),O点坐标为(0,0),在Rt△BOC中,∴B点坐标为∵△OAB按顺时针方向旋转,得到△OA′B′,∴∴点A′与点B重合,即点A′的坐标为故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.2、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3、D【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故选D.点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.4、D【解析】

A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.【详解】A.-2x-2y32x3y=-4xy4,故本选项错误;B.

(−2a2)3=−8a6,故本项错误;C.

(2a+1)(2a−1)=4a2−1,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.5、C【解析】

在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.6、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频7、C【解析】

分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、B【解析】

在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.9、D【解析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.10、C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、可添∠ABD=∠CBD或AD=CD.【解析】

由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案为∠ABD=∠CBD或AD=CD.【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.12、【解析】

将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【详解】解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=.故答案为:.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13、y(y+4)(y﹣4)【解析】试题解析:原式故答案为点睛:提取公因式法和公式法相结合因式分解.14、【解析】

直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故答案为(﹣,).【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.15、x(3x+1)(3x﹣1)【解析】

提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.【详解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案为x(3x+1)(3x-1).【点睛】本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.16、【解析】

先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题(共8题,共72分)17、(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1.则DE=4+1=2.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.18、;2.【解析】

先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式===的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.19、探究:证明见解析;应用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】试题分析:探究:判断出∠BAD=∠CAE,再用SAS即可得出结论;

应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;

拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论;

(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论.试题解析:探究:∵∠BAC=90°,∠DAE=90°,

∴∠BAC=∠DAE.

∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,

∴∠BAD=∠CAE.

∵AB=AC,AD=AE,

∴△ABD≌△ACE.

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD.

应用:在Rt△ABC中,AB=AC=,

∴∠ABC=∠ACB=45°,BC=2,

∵CD=1,

∴BD=BC-CD=1,

由探究知,△ABD≌△ACE,

∴∠ACE=∠ABD=45°,

∴∠DCE=90°,

在Rt△BCE中,CD=1,CE=BD=1,

根据勾股定理得,DE=,

∴△DCE的周长为CD+CE+DE=2+

故答案为2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE

∴BC=CD-BD=CD-CE,

故答案为BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.

∴BD=CE

∴BC=BD-CD=CE-CD,

故答案为BC=CE-CD.20、(1)24,1;(2)54;(3)360.【解析】

(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【详解】(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).21、(1)详见解析;(2)1.【解析】

(1)利用直线DE是线段AC的垂直平分线,得出AC⊥DE,即∠AOD=∠COE=90°,从而得出△AOD≌△COE,即可得出四边形ADCE是菱形.

(2)利用当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.【详解】(1)证明:由题意可知:∵分别以A、C为圆心,以大于12∴直线DE是线段AC的垂直平分线,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四边形ADCE是平行四边形,又∵AC⊥DE,∴四边形ADCE是菱形;(2)解:当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周长为18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【点睛】考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.22、(1)见解析;(2)△ADF的面积是.【解析】试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;

(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC=,求出OM,根据cos∠BAC=,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.试题解析:(1)证明:连接OD,CD,∵AC是⊙O的直径,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD过圆心O,∴ED为⊙O的切线.(2)过O作OM⊥AB于M,过F作FN⊥AB于N,则OM∥FN,∠OMN=90°,∵OE∥AB,∴四边形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂径定理得:AD=2AM=,即△ADF的面积是AD×FN=××=.答:△ADF的面积是.【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.23、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值为;(3)P(2,﹣),理由见解析.【解析】

(1)当y=0时,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0<t<3时,当点M在OB上运动时,即3≤t≤4时,进行讨论可求P点坐标.【详解】(1)当y=0时,﹣=0,解得x1=1,x2=﹣3,∵点A在点B的左侧,∴A(﹣3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk﹣,故直线l的表达式为y=﹣x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论