江西省九江市化纤厂学校2022-2023学年高一数学文下学期摸底试题含解析_第1页
江西省九江市化纤厂学校2022-2023学年高一数学文下学期摸底试题含解析_第2页
江西省九江市化纤厂学校2022-2023学年高一数学文下学期摸底试题含解析_第3页
江西省九江市化纤厂学校2022-2023学年高一数学文下学期摸底试题含解析_第4页
江西省九江市化纤厂学校2022-2023学年高一数学文下学期摸底试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省九江市化纤厂学校2022-2023学年高一数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为(

)A.na(1﹣b%) B.a(1﹣nb%) C.a(1﹣b%)n D.a[1﹣(b%)n]参考答案:C【考点】等比数列的通项公式.【专题】应用题.【分析】根据题意可知第一年后,第二年后以及以后的每年的价值成等比数列,进而根据等比数列的通项公式求得答案.【解答】解:依题意可知第一年后的价值为a(1﹣b%),第二年价值为a(1﹣b%)2,依此类推可知每年的价值成等比数列,其首项a(1﹣b%)公比为1﹣b%,进而可知n年后这批设备的价值为a(1﹣b%)n故选C【点评】本题主要考查等比数列的应用,解题的关键是利用已知条件求得数列的通项公式,属基础题.2.在正方体ABCD-A1B1C1D1中,P、Q分别是棱AA1、CC1的中点,则过点B、P、Q的截面是()A.三角形

B.菱形但不是正方形

C.正方形

D.邻边不等的矩形参考答案:B3.已知等差数列中,则()A.10 B.16 C.20 D.24参考答案:C分析】根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.4.为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度参考答案:D【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D.5.设,过定点A的动直线和过定点B的动直线交于点,则的最大值是()A.5 B.10 C. D.参考答案:A【分析】由题意知两直线互相垂直,根据直线分别求出定点与定点,再利用基本不等式,即可得出答案。【详解】直线过定点,直线过定点,又因直线与直线互相垂直,即即,当且仅当时取等号故选A【点睛】本题考查直线位置关系,考查基本不等式,属于中档题。6.下列命题中正确的是(

)A.第一象限角一定不是负角

B.小于90的角一定是锐角C.钝角一定是第二象限的角

D.终边相同的角一定相等参考答案:C7.函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=ax+b的大致图象是(

)A. B. C. D.参考答案:B【考点】指数函数的图像变换.【专题】函数的性质及应用.【分析】根据一元二次函数的图象确定a,b的取值范围,即可得到结论.【解答】解:由图象可知0<a<1,b<﹣1,则g(x)=ax+b为减函数,g(0)=1+b<0,则对应的图象为B,故选:B【点评】本题主要考查函数的图象识别和判断,利用一元二次函数和指数函数的图象和性质是解决本题的关键.8.若不等式对任意实数均成立,则实数的取值范围是(

A、

B、

C、

D、参考答案:B9.函数在区间的简图是(

)A. B.C. D.参考答案:A【分析】根据函数解析式可得当x时,y=sin[(2]>0,故排除A,D;当x时,y=sin0=0,故排除C,从而得解.【详解】解:当时,,故排除A,D;当时,,故排除C;故选:B.【点睛】本题主要考查了正弦函数的图象和性质,考查了五点法作图,特值法,属于基础题.10.函数的零点在区间(

)内.

(A)(1,2)

(B)(2,3)

(C)(3,4)

(D)(4,5)参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=log0.5(﹣x2+4x+5),则f(3)与f(4)的大小关系为.参考答案:f(3)<f(4)【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用函数f(x)=log0.5x在R上单调递减即可得出.【解答】解:∵函数f(x)=log0.5x在R上单调递减,f(3)=log0.58,f(4)=log0.55,∴f(3)<f(4).故答案为:f(3)<f(4).【点评】本题考查了对数函数的单调性,属于基础题.12.对于实数a,b,c,有下列命题:①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b>0其中真命题为(填写序号)

.参考答案:②③④【考点】不等式的基本性质.【分析】①,若a>b,则ac与bc大小关系不定;②,若ac2>bc2,则a>b;③,若a<b<0,则a2>ab,ab>b2,则a2>ab>b2;④,若c>a>b>0,则0<c﹣a<c﹣b,??则;⑤,若a>b,,则a>0,b<0.【解答】解:对于①,若a>b,则ac与bc大小关系不定,故①是假命题;对于②,若ac2>bc2,则a>b,故②是真命题;对于③,若a<b<0,则a2>ab,ab>b2,则a2>ab>b2,故③是真命题;对于④,若c>a>b>0,则0<c﹣a<c﹣b,??则,故④是真命题;对于⑤,若a>b,,则a>0,b<0,故⑤是假命题;故答案为:②③④【点评】本题考查了不等式的性质,属于中档题.13.函数的定义域是

。(用集合表示)参考答案:14.若函数的定义域是,则其值域为_________.参考答案:略15.()+log3+log3=

.参考答案:【考点】对数的运算性质.【分析】直接利用对数运算法则以及有理指数幂的运算法则化简求解即可.【解答】解:()+log3+log3=+log35﹣log34+log34﹣log35=.故答案为:.【点评】本题考查有理指数幂的运算法则以及对数运算法则的应用,考查计算能力.16.已知是两个相互垂直的单位向量,则

.参考答案:17.已知圆锥的底面半径为2,高为6,在它的所有内接圆柱中,表面积的最大值是__________.参考答案:9π【分析】设出内接圆柱的底面半径,求得内接圆柱的高,由此求得内接圆柱的表面积的表达式,进而求得其表面积的最大值.【详解】设圆柱的底面半径为,高为,由图可知:,解得.所以内接圆柱的表面积为,所以当时,内接圆柱的表面积取得最大值为.故答案为:【点睛】本小题主要考查圆锥的内接圆柱表面积有关计算,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知△ABC内角A、B、C的对边分别是a、b、c,若,,.(1)求a;(2)求△ABC的面积.参考答案:(1);(2).【分析】(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面积公式,即可求解三角形的面积.【详解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合题意,舍去,(2)由(1)知,所以,所以的面积为.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.

19.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.参考答案:【考点】圆的标准方程. 【专题】计算题;方程思想;数形结合法;直线与圆. 【分析】分圆心C在第一象限和第三象限两种情况,当圆心C1在第一象限时,过C1分别作出与x轴和y轴的垂线,根据角平分线的性质得到四边形OBCD为正方形,连接C1A,由题意可知圆C与y轴截得的弦长为4,根据垂径定理即可求出正方形的边长即可得到圆心C的坐标,在直角三角形ABC中,利用勾股定理即可求出AC的长即为圆的半径,由圆心和半径写出圆的方程;当圆心C在第三象限时,同理可得圆C的方程. 【解答】解:根据题意画出图形,如图所示: 当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1, 由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形, ∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2), 在直角三角形ABC1中,根据勾股定理得:AC1=2, 则圆C1方程为:(x﹣2)2+(y﹣2)2=8; 当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2, 由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′, =OD′=C2B′=2,即圆心C2(﹣2,﹣2), 在直角三角形A′B′C2中,根据勾股定理得:A′C2=2, 则圆C1方程为:(x+2)2+(y+2)2=8, ∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8. 【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题. 20.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,的三个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)列举出所有可能的结果;(2)求取出的两个球上标号为不同数字的概率;(2)求取出的两个球上标号之积能被3整除的概率.18、参考答案:(1)11,12,13,21,22,23,31,32,33;

(2)P(A)=;

(3)P(B)=略21.已知集合,试用列举法表示集合。参考答案:解析:由题意可知是的正约数,当;当;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论