




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年辽宁省鞍山市洋河中学高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设a=20.3,b=0.32,c=log20.3,则a,b,c的大小关系是(
)A.a<b<c B.c<b<a C.c<a<b D.b<c<a参考答案:B【考点】对数值大小的比较.【专题】计算题.【分析】要比较三个数字的大小,可将a,b,c与中间值0,1进行比较,从而确定大小关系.【解答】解:∵0<0.32<1log20.3<020.3>1∴log20.3<0.32<20.3,即c<b<a故选B.【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.2.下列函数中在区间上是增函数的是
(
)A.
B.C.D.高考资源网参考答案:A3.已知直线与平行则k的值是(
)A.3和5
B.3和4
C.4和5
D.-3和-5参考答案:A4.已知a,b为实数,则“a>b”是“lna>lnb”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】根据a,b的范围结合对数函数的性质确定充分条件,还是必要条件即可.【解答】解:当a<0或b<0时,不能得到Ina>Inb,反之由Ina>Inb即:a>b>0可得a>b成立,所以“a>b”是“Ina>Inb”的必要不充分条件,故选:B.5.函数的零点所在的区间是()A. B. C. D.参考答案:B,故零点在区间.6.直线的倾斜角α为()A. B. C. D.参考答案:D【考点】直线的倾斜角.【分析】把直线的方程化为斜截式,求出斜率,根据斜率和倾斜角的关系,倾斜角的范围,求出倾斜角的大小.【解答】解:直线x+y﹣1=0即y=﹣x+,故直线的斜率等于﹣,设直线的倾斜角等于α,则0≤α<π,且tanα=﹣,故α=,故选D.7.函数f(x)=ex﹣的零点所在的区间是()A. B. C. D.参考答案:B【考点】函数零点的判定定理.【分析】根据零点存在定理,对照选项,只须验证f(0),f(),f(),等的符号情况即可.也可借助于图象分析:画出函数y=ex,y=的图象,由图得一个交点.【解答】解:画出函数y=ex,y=的图象:由图得一个交点,由于图的局限性,下面从数量关系中找出答案.∵,,∴选B.【点评】超越方程的零点所在区间的判断,往往应用零点存在定理:一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间[a,b]上有零点.8.若函数的图像和的图象关于直线对称,则的解析式为.(A)
(B)
(C)
(D)参考答案:B9.(5分)若函数f(x)=(a﹣3)?ax是指数函数,则f()的值为() A. 2 B. 2 C. ﹣2 D. ﹣2参考答案:考点: 指数函数的定义、解析式、定义域和值域.专题: 函数的性质及应用.分析: 根据指数函数的定义可得a﹣3=1,a>0,a≠1,先求出函数解析式,将x=代入可得答案.解答: ∵函数f(x)=(a﹣3)?ax是指数函数,∴a﹣3=1,a>0,a≠1,解得a=8,∴f(x)=8x,∴f()==2,故选:B点评: 本题主要考查了指数函数的定义:形如y=ax(a>0,a≠1)的函数叫指数函数,属于考查基本概念.10.正项等比数列满足,若存在两项,使得,则的最小值是.
.
.
.不存在参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.若α为锐角,且则sinα的值为________.参考答案:
12.在数列中,已知,当为奇数时,,当为偶数时,,则下列的说法中:①,;
②为等差数列;③为等比数列;
④当为奇数时,;当为偶数时,.正确的为
▲
.
参考答案:124略13.、函数最小正周期为
参考答案:π
略14.若一个三角形两内角α、β满足2α+β=π,则y=cosβ﹣6sinα的范围为.参考答案:(﹣5,﹣1)【考点】GI:三角函数的化简求值.【分析】先由:2α+β=π,结合配方法将y=cos(π﹣2α)﹣6siα转化为:y=2(sinα﹣)2﹣,再令t=sinα∈(0,1),用二次函数的性质求解.【解答】解:∵一个三角形两内角α、β满足2α+β=π,∴α、β均大于零,∴2α<π,∴α∈(0,).则y=cosβ﹣6sinα=cos(π﹣2α)﹣6sinα=﹣cos2α﹣6sinα=2sin2α﹣6sinα﹣1=2(sinα﹣)2﹣,令t=sinα,根据α∈(0,),可得t∈(0,1),则y=2﹣,∴当t=0时,y=﹣1;当t=1时,y=﹣5,且函数y在(0,1)上单调递减,∴y∈(﹣5,﹣1),故答案为:(﹣5,﹣1).15.已知点P(x,y)在不等式组所表示的平面区域内运动,则的取值范围为
.参考答案:(1,)【考点】7C:简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的阴影部分.则z=,表示直线的斜率,再将点P移动,观察倾斜角的变化即可得到k的最大、最小值,从而得到的取值范围.【解答】解:设直线3x﹣2y+4=0与直线2x﹣y﹣2=0交于点A,可得A(8,14),不等式组表示的平面区域如图:则的几何意义是可行域内的P(x,y)与坐标原点连线的斜率,由可行域可得k的最大值为:kOA=,k的最小值k=1.因此,的取值范围为(1,)故答案为:(1,).16.函数的定义域为______________________________。参考答案:
解析:
17.函数在区间上是增函数,则实数的取值范围为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数,(1)求不等式的解集;(2)若对一切,均有成立,求实数的取值范围.参考答案:(1)不等式的解集为(2)当时,恒成立,即对一切,均有不等式成立.而(当时等号成立).
实数的取值范围是略19.(12分)阅读如图所示算法:(1)指出该算法表示的功能;(2)画出算法框图.参考答案:20.已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(1)求A∩B、(?UA)∪(?UB);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.参考答案:【考点】交、并、补集的混合运算;集合关系中的参数取值问题.【分析】(1)求出集合B,然后直接求A∩B,通过(CUA)∪(CUB)CU(A∩B)求解即可;(2)通过M=?与M≠?,利用集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,直接求实数k的取值范围.【解答】解:(1)因为全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}={x|﹣2≤x≤3},所以A∩B={x|1<x≤3};(CUA)∪(CUB)=CU(A∩B)={x|x≤1,或x>3};(2)①当M=?时,2k﹣1>2k+1,不存在这样的实数k.②当M≠?时,则2k+1<﹣4或2k﹣1>1,解得k或k>1.21.本题满分15分】
某工厂生产甲、乙两种产品,这两种产品每千克的产值分别为600元和400元,已知每生产1千克甲产品需要A种原料4千克,B种原料2千克;每生产1千克乙产品需要A种原料2千克,B种原料3千克.但该厂现有A种原料100千克,B种原料120千克.问如何安排生产可以取得最大产值,并求出最大产值.参考答案:解:设生产甲产品x千克,乙产品y千克,产值为z元,目标函数为:z=600x+400y.
则.作出可行域如图(略),由得M(7.5,35).
平移直线3x+2y=0,使它过M点,此时z取得最大值z=600x+400y=18500,
故安排生产甲产品7.5千克,乙产品35千克,可取得最大产值18500元.22.函数(I)写出函数的单调递增区间,并给出证明;(II)写
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影视录放设备的智能追踪优化技术前景展望考核试卷
- 珠宝首饰品牌口碑建设考核试卷
- 电梯用电缆的故障预防与维护管理考核试卷
- 坚果加工过程中的品质检测与评价考核试卷
- 微型化医疗仪器仪表开发考核试卷
- 机器人在服务业的应用场景与市场前景考核试卷
- 影视录放设备品牌策略考核试卷
- 无机碱的市场分析考核试卷
- 矿产勘查中的野外安全与应急处理考核试卷
- 新媒体营销电子教案 第7章 数据:大数据营销
- 新课标下如何上好音乐课
- 新媒体运营(用户运营内容运营活动运营产品运营社群运营)PPT完整全套教学课件
- 住宅楼屋面工程策划方案讲解图文丰富
- 专题人寿保险的九大法律优势
- (完整版)浙江大学研究生复试体检表
- 市政公用工程设计文件编制深度规定(2013年高清版)
- GB/T 3512-2001硫化橡胶或热塑性橡胶热空气加速老化和耐热试验
- 甲供材料领料单
- 产品表面达克罗处理作业指导书
- 美国社会保障制度课件
- 红木家具自媒体推广方案
评论
0/150
提交评论