江苏省南通市崇川校2024年中考数学考前最后一卷含解析_第1页
江苏省南通市崇川校2024年中考数学考前最后一卷含解析_第2页
江苏省南通市崇川校2024年中考数学考前最后一卷含解析_第3页
江苏省南通市崇川校2024年中考数学考前最后一卷含解析_第4页
江苏省南通市崇川校2024年中考数学考前最后一卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市崇川校2024年中考数学考前最后一卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有()个.A.3 B.4 C.2 D.12.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.53.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件4.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是()A.0<r<3 B.r>4 C.0<r<5 D.r>55.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=()A.6 B. C.12﹣π D.12﹣π6.若代数式,,则M与N的大小关系是()A. B. C. D.7.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.60° B.65° C.70° D.75°8.已知二次函数图象上部分点的坐标对应值列表如下:x…-3-2-1012…y…2-1-2-127…则该函数图象的对称轴是()A.x=-3 B.x=-2 C.x=-1 D.x=09.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为()A.1 B.2 C.3 D.610.的整数部分是()A.3 B.5 C.9 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.12.当a<0,b>0时.化简:=_____.13.如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为__________.14.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.15.(题文)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.16.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.三、解答题(共8题,共72分)17.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.18.(8分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.19.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程的解集(请直接写出答案).20.(8分)阅读材料,解答下列问题:神奇的等式当a≠b时,一般来说会有a2+b≠a+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…(1)特例验证:请再写出一个具有上述特征的等式:;(2)猜想结论:用n(n为正整数)表示分数的分母,上述等式可表示为:;(3)证明推广:①(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;②等式()2+=+()2(m,n为任意实数,且n≠0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由.21.(8分)计算:(1)(2)22.(10分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.23.(12分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.24.小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.【详解】∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以②正确;∵抛物线开口向下,∴a>0,∵抛物线的对称轴为直线x=-=-1,∴b=2a>0,∴ab>0,所以③错误;∵x=-1时,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正确.故选A.【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.2、A【解析】

根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.3、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.4、D【解析】

先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【详解】∵点P的坐标为(3,4),∴OP1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.5、D【解析】

根据题意可得到CE=2,然后根据S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【详解】解:∵BC=4,E为BC的中点,∴CE=2,∴S1﹣S2=3×4﹣,故选D.【点睛】此题考查扇形面积的计算,矩形的性质及面积的计算.6、C【解析】∵,∴,∴.故选C.7、C【解析】试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.考点:切线的性质、三角形外角的性质、圆的基本性质.8、C【解析】

由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.【详解】解:∵x=-2和x=0时,y的值相等,∴二次函数的对称轴为,故答案为:C.【点睛】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.9、B【解析】

先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.【详解】解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),则B(c,b),E(c,),设D(x,y),∵D和E都在反比例函数图象上,∴xy=k,即,∵四边形ODBC的面积为3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案为:B.【点睛】本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.10、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.12、【解析】分析:按照二次根式的相关运算法则和性质进行计算即可.详解:∵,∴.故答案为:.点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.13、【解析】

根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.【详解】如图,在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴对称轴为x=1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),连结D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四边形EDFG周长的最小值是.【点睛】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.14、3【解析】

作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【详解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB•sin∠BAC=,由题意得,∠C=45°,∴BC==(千米),故答案为3.【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15、12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BP⊥AC时,BP有最小值,观察图象可得,BP的最小值为4,即BP⊥AC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以ΔABC的面积是116、【解析】

根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.【详解】抛物线的对称轴为x=-.∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,∴点C的横坐标为-1.∵四边形ABCD为菱形,∴AB=BC=AD=1,∴点D的坐标为(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴OB==4,∴S菱形ABCD=AD•OB=1×4=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.三、解答题(共8题,共72分)17、(1)①证明见解析;②25;(2)为或50+1.【解析】

(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵点F是AB的中点,∴AF=AB=5,∴AC=AF,∵△ADE是等边三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF≌△ADC,∴∠AEF=∠C=90°,EF=CD=x,又∵点F是AB的中点,∴AE=BE=y,在Rt△AEF中,勾股定理可得:y2=25+x2,∴y2﹣x2=25.(2)①当点在线段CB上时,由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,∴AD2=50,△ADE的面积为;②当点在线段CB的延长线上时,由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt△ACD中,勾股定理可得AD2=200+100,综上所述,△ADE的面积为或.【点睛】此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.18、(1)60,90°;(2)补图见解析;(3)300;(4).【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.详解:(1)60;90°.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.19、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B(2,﹣4)在y=上,∴m=﹣1.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴,解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.(3)不等式的解集为:﹣4<x<0或x>2.20、(1)()1+=+()1;;(1)()1+=+()1;;(3)①成立,理由见解析;②成立,理由见解析.【解析】

(1)根据题目中的等式列出相同特征的等式即可;(1)根据题意找出等式特征并用n表达即可;(3)①先后证明左右两边的等式的结果,如果结果相同则成立;②先证明等式是否成立,如果成立再根据等式的特征写出m,n至少有一个为无理数的等式.【详解】解:(1)具有上述特征的等式可以是()1+=+()1,故答案为()1+=+()1;(1)上述等式可表示为()1+=+()1,故答案为()1+=+()1;(3)①等式成立,证明:∵左边=()1+=+=,右边=+()1=,∴左边=右边,∴等式成立;②此等式也成立,例如:()1+=+()1.【点睛】本题考查了规律的知识点,解题的关键是根据题目中的等式找出其特征.21、(1);(2)1.【解析】

(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=;(2)原式.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.22、(1)证明见解析;(2).【解析】

(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积23、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论