版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山东省临沂市费城中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定义在上的任意函数都可以表示成一个奇函数与一个偶函数之和,如果,那么(
)
A.,
B.,C.,
D.,参考答案:
C
解析:2.如果函数在区间上是减少的,那么实数的取值范围是(
)A、
B、
C、
D、参考答案:A略3.如果集合中至少有一个负数,则(
)
A.
B.
C.
D.参考答案:B略4.函数,在区间上存在一个零点,则的取值范围是 A.或 B. C.
D.参考答案:A5.直线与互相垂直,则(
)A.
B.1
C.
D.参考答案:C略6.已知函数是R上的增函数,则实数的取值范围是()A.
B.
C.
D.参考答案:D。7.已知函数的图像关于轴对称,并且是[0,+上的减函数,若,
则实数的取值范围是
(
)A.
B.
C.
D.
参考答案:C略8.定义全集的子集的特征函数对于任意的集合、,下列说法错误的是().A.若,则,对于任意的成立B.,对于任意的成立C.,对于任意的成立D.若,则,对于任意的成立参考答案:C解:当且时,,,,所以,所以选项说法错误,故选.9.,则集合的非空子集的个数是A.
B.
C.
D.参考答案:C略10. 已知函数在上的值域为,则实数的值为
(
). . . .参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.如图,在正方体ABCD﹣A1B1C1D1中,点P在面对角线AC上运动,给出下列四个命题:①D1P∥平面A1BC1;②D1P⊥BD;③平面PDB1⊥平面A1BC1;④三棱锥A1﹣BPC1的体积不变.则其中所有正确的命题的序号是.参考答案:①③④【考点】命题的真假判断与应用.【分析】①根据线面平行的判断定理进行判断D1P∥平面A1BC1;②D利用特殊值法即可判断D1P⊥BD不成立;③根据面面垂直的判断条件即可判断平面PDB1⊥平面A1BC1;④将三棱锥的体积进行等价转化,即可判断三棱锥A1﹣BPC1的体积不变.【解答】解:①∵在正方体中,D1A∥BC1,D1C∥BA1,且D1A∩DC1=D1,∴平面D1AC∥平面A1BC1;∵P在面对角线AC上运动,∴D1P∥平面A1BC1;∴①正确.②当P位于AC的中点时,D1P⊥BD不成立,∴②错误;③∵A1C1⊥平面BDD1B1;∴A1C1⊥B1D,同理A1B⊥B1D,∴B1D⊥平面A1BC1,∴平面BDD1B⊥面ACD1,∴平面PDB1⊥平面A1BC1;∴③正确.④三棱锥A1﹣BPC1的体积等于三棱锥B﹣A1PC1的体积.△A1PC1的面积为定值,B到平面A1PC1的高为BP为定值,∴三棱锥A1﹣BPC1的体积不变,∴④正确.故答案为:①③④.12.在轴上的截距为2,在轴上截距为3的直线方程为
参考答案:略13.若是一次函数,,则
参考答案:略14.边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的体积是.参考答案:1【考点】棱柱、棱锥、棱台的体积.【分析】取DB中点O,连结AO,CO,易得AO⊥面BCD,再利用体积公式即可求解.【解答】解:如图,取DB中点O,连结AO,CO,∵△ABD,△CBD边长为2的两个等边△‘∴AO⊥BD,CO⊥BD,又∵面ABD⊥面BDC;∴AO⊥面BCD,AO=,四面体ABCD的体积v=,故答案为:1.15.已知k是正整数,且1≤k≤2017,则满足方程sin1°+sin2°+…+sink°=sin1°?sin2°…sink°的k有
个.参考答案:11【考点】GI:三角函数的化简求值.【分析】由三角函数的值域可知,除k=1外当等式sin1°+sin2°+…+sink°=sin1°?sin2°…sink°的左右两边均为0时等式成立,由此可得正整数k的个数.【解答】解:由三角函数的单调性及值域,可知sin1°?sin2°…sink°<1.∴除k=1外只有当等式sin1°+sin2°+…+sink°=sin1°?sin2°…sink°的左右两边均为0时等式成立,则k=1、359、360、719、720、1079、1080、1439、1440、1799、1800时等式成立,满足条件的正整数k有11个.故答案为:11.16.对于实数a和b,定义运算*:,设f(x)=(2x﹣1)*(x﹣1),若直线y=m与函数y=f(x)恰有三个不同的交点,则m的取值范围.参考答案:(0,)【考点】根的存在性及根的个数判断.【专题】计算题;作图题;函数的性质及应用.【分析】化简f(x)=,作函数f(x)的图象,利用数形结合的方法求解.【解答】解:当x≤0时,2x﹣1≤x﹣1,f(x)=(2x﹣1)*(x﹣1)=(2x﹣1)2﹣(2x﹣1)(x﹣1)=(2x﹣1)x,当x>0时,2x﹣1>x﹣1,f(x)=(2x﹣1)*(x﹣1)=﹣x(x﹣1),故f(x)=,作函数f(x)=的图象如下,结合图象可知,m的取值范围为(0,);故答案为:(0,).【点评】本题考查了数形结合的思想的应用及分段函数的化简与运算.17.已知,,则的最小值为 .参考答案:4三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设数列的前n项和为,为等比数列,且(1)求数列和的通项公式;(2)设,求数列的前n项和。
参考答案:解析:(1)当故的通项公式为的等差数列.设的通项公式为故(2)两式相减得:19.已知向量,的夹角为60°,且,,(1)求;
(2)求.参考答案:(1)1;(2)【分析】(1)利用向量数量积的定义求解;(2)先求模长的平方,再进行开方可得.【详解】(1)?=||||cos60°=2×1×=1;(2)|+|2=(+)2=+2?+=4+2×1+1=7.所以|+|=.【点睛】本题主要考查平面向量数量积的定义及向量模长的求解,一般地,求解向量模长时,先把模长平方,化为数量积运算进行求解.20.(本小题满分6分)(1)计算(2)已知,求的值.参考答案:解.(1)……………1分
……………3分
(2)
即………5分……6分21.(本小题满分14分)如图(5),已知三棱柱BCF-ADE的侧面CFED与ABFE都是边长为1的正方形,M、N两点分别在AF和CE上,且AM=EN.(1)求证:平面ABCD平面ADE;(2)求证:MN//平面BCF;
(3)若点N为EC的中点,点P为EF上的动点,试求PA+PN的最小值.参考答案:解:(1)∵四边形CFED与ABFE都是正方形∴又,
∴平面,---------------2分又∵,∴平面∵平面ABCD,∴平面ABCD平面ADE-------------------------4分(2)证法一:过点M作交BF于,过点N作交BF于,连结,------------5分∵∴又∵
∴--------------------------------7分∴四边形为平行四边形,---------------------------------------------8分----------10分[法二:过点M作交EF于G,连结NG,则-----------------------------------------------------------6分,------------7分同理可证得,又,∴平面MNG//平面BCF--------9分∵MN平面MNG,
.--------------------------------------------10分](3)如图将平面EFCD绕EF旋转到与ABFE在同一平面内,则当点A、P、N在同一直线上时,PA+PN最小,------------------------------------11分在△AEN中,∵由余弦定理得,------13分∴
即.-----------------------14分略22.(12分)已知函数f(x)=loga(x+1),g(x)=loga(1﹣x),其中a>0且a≠1(Ⅰ)判断函数f(x)+g(x)的奇偶性;(Ⅱ)求使f(x)<g(x)成立的x的取值范围.参考答案:考点: 函数奇偶性的判断;对数值大小的比较.专题: 函数的性质及应用.分析: (Ⅰ)根据函数奇偶性的定义即可判断函数f(x)+g(x)的奇偶性;(Ⅱ)根据对数函数的单调性即可解不等式f(x)<g(x).解答: (Ⅰ)函数f(x)+g(x)=loga(x+1)+loga(1﹣x),由,解得﹣1<x<1,即函数的定义域为(﹣1,1),设F(x)=f(x)+g(x),则F(﹣x)=f(﹣x)+g(﹣x)=log
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 路基安全培训
- 大学会计实习报告范文锦集五篇
- 预防校园欺凌安全教育工作总结
- 学生个人实习报告模板合集五篇
- 安全工作计划锦集六篇
- 《丑小鸭》教学反思
- 消防工作计划4篇
- 营销实习报告模板集锦10篇
- 操作员工作总结
- 物业员工上半年工作总结5篇
- 2023年考研考博-考博英语-西南政法大学考试历年真题摘选含答案解析
- 川2020G145-TY 四川省超限高层建筑抗震设计图示
- 病理学(南开大学)知到章节答案智慧树2023年
- 厦门大学2023年无机化学考研真题
- 《昆明的雨》 课件
- GYK轨道车运行控制设备使用说明书V12
- 电力无违章先进个人申报材料
- 设备供货质量保证体系及管理制度
- 2023-2024学年西藏藏族自治区拉萨市小学数学六年级上册期末深度自测试卷
- YY/T 1819-2022牙科学正畸矫治器用膜片
- GB/T 4985-2021石油蜡针入度测定法
评论
0/150
提交评论