版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津万盛高级中学2022年高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知变量x,y满足,则的取值范围是(
)A. B.[-2,0] C. D.[-2,-1]参考答案:A试题分析:由题意得,画出约束条件所表示的平面区域,如图所示,设目标函数,当过点时,目标函数取得最大值,此时最大值为;当过点时,目标函数取得最小值,此时最小值为,所以的取值范围是,故选A.考点:简单的线性规划求最值.2.函数f(x)是R上最小正周期为2的周期函数,当0≤x<2时f(x)=x2﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为()A.6 B.7 C.8 D.9参考答案:B【考点】函数的周期性.【专题】计算题;转化思想;函数的性质及应用.【分析】当0≤x<2时,f(x)=x2﹣x=0解得x=0或x=1,由周期性可求得区间[0,6)上解的个数,再考虑x=6时的函数值即可.【解答】解:当0≤x<2时,f(x)=x2﹣x=0解得x=0或x=1,因为f(x)是R上最小正周期为2的周期函数,故f(x)=0在区间[0,6)上解的个数为6,又因为f(6)=f(0)=0,故f(x)=0在区间[0,6]上解的个数为7,即函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7,故选:B.【点评】本题考查函数的零点个数问题、函数的周期性的应用,考查利用所学知识解决问题的能力.3.设a=log3,b=()
c=2,则
(
)Aa<b<c
B
c<b<a
C
c<a<b
D
b<a<c参考答案:A4.已知向量,,则(
)A.
B.
C.
D.参考答案:A5.已知且是第三象限的角,则的值是()
参考答案:A略6.下列各组函数是同一函数的是………………(
)①与;②与;
③与;
④与.(A)
①②
(B)①③
(C)①④
(D)③④参考答案:B7.(3分)已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是() A. m?α,n?α,m∥β,n∥β?α∥β B. α∥β,m?α,n?β,?m∥n C. m⊥α,m⊥n?n∥α D. m∥n,n⊥α?m⊥α参考答案:D考点: 空间中直线与平面之间的位置关系.专题: 探究型;数形结合;分类讨论.分析: 根据m,n为两条不同的直线,α,β为两个不同的平面,可得该直线与直线可以平行,相交或异面,平面与平面平行或相交,把平面和直线放在长方体中,逐个排除易寻到答案.解答: 在长方体ABCD﹣A1B1C1D1中,A、若平面AC是平面α,平面BC1是平面β,直线AD是直线m,点E,F分别是AB,CD的中点,则EF∥AD,EF是直线n,显然满足α∥β,m?α,n?β,但是m与n异面;B、若平面AC是平面α,平面A1C1是平面β,直线AD是直线m,A1B1是直线n,显然满足m?α,n?α,m∥β,n∥β,但是α与β相交;C、若平面AC是平面α,直线AD是直线n,AA1是直线m,显然满足m⊥α,m⊥n,但是n∈α;故选D.点评: 此题是个基础题.考查直线与平面的位置关系,属于探究性的题目,要求学生对基础知识掌握必须扎实并能灵活应用,解决此题问题,可以把图形放入长方体中分析,体现了数形结合的思想和分类讨论的思想.8.函数f(x)=loga(x+2)+1(a>0且a≠1)的图象经过的定点是()A.(﹣2,1) B.(﹣1,1) C.(1,0) D.(1,2)参考答案:B【考点】4N:对数函数的图象与性质.【分析】根据对数函数的性质,令真数等于1,可得x的值,带入计算即可得y的值,从而得到定点的坐标.【解答】解:函数f(x)=loga(x+2)+1,令x+2=1,可得:x=﹣1,那么y=1,∴函数f(x)=loga(x+2)+1(a>0且a≠1)的图象经过的定点是(﹣1,1).故选:B.9.函数的值域是(
)A.
B.
C.
D.参考答案:B10.定义域为R的函数,若关于的方程有3个不同实数解,且,则下列说法错误的是(
)
A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.棱长为2的正方体的外接球的表面积为.
参考答案:略12.函数过定点
参考答案:(-2,-1)
13.交于A,B两点,则AB的垂直平分线的方程为___________________.参考答案:
14.如图,在2×3的矩形方格纸上,各个小正方形的顶点称为格点,以格点为顶点的等腰直角三角形共有__________个.参考答案:见解析直角边长为时,个,直角边长为时,个,直角边长为时,个,直角边长为时,个,∴总共有.15.设,则的定义域为_________。参考答案:(-4,-1)∪(1,4)解:的定义域为(-2,2),∴定义域满足为,∴x∈(-4,4),定义域满足为,∴x∈(-∞,-1)∪(1,+∞)。∴的定义域为(-4,-1)∪(1,4)。16.函数是R上的单调函数且对任意实数有.则不等式的解集为__________参考答案:(-1,)略17.若集合,若,则实数的取值范围是___参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知函数f(x)=.(1)求f(f());(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.参考答案:【考点】根的存在性及根的个数判断.【分析】(1)利用分段函数,逐步求解函数值即可.(2)利用分段函数求出f(f(x0))的解析式,然后通过求解方程得到函数f(x)的二阶不动点的个数.【解答】解:(1)∵f(x)=.∴f())=ln=,∴f(f())=f()=2﹣2×=1;(2)函数f(x)=.x∈[0,),f(x)=2﹣2x∈(1,2],x∈[,1),f(x)=2﹣2x∈(0,1],x∈[1,e],f(x)=lnx∈(0,1),∴f(f(x))=,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,所以:x0∈[0,),ln(2﹣2x0)=x0,由y=ln(2﹣x0),y=x0,图象可知:存在满足题意的不动点.x0∈[,1),﹣2+4x0=x0,解得x0=,满足题意.x0∈[1,e],2﹣2lnx0=x0,即2﹣x0=2lnx0,由y=2﹣x0,y=2lnx0,图象可知:存在满足题意的不动点.函数f(x)的二阶不动点的个数为:3个.【点评】本题考查新定义的应用,考查数形结合,分类讨论思想以及转化思想的应用,考查计算能力.19.已知a,b,c分别为锐角△ABC内角A,B,C的对边,(1)求角A;(2)若,△ABC的面积是,求a的值.参考答案:(1);(2)【分析】(1)由,根据正弦定理可得,结合,可得,从而可得结果;(2)先根据面积公式求出的值,再利用余弦定理求出的值即可.【详解】(1)由正弦定理得,在三角形中,,,,三角形是锐角三角形,.(2)若,的面积是,则,可得,则,即.【点睛】本题主要考查利用正弦定理,余弦定理解三角形以及三角形的面积公式的应用,属于中档.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用.20.(14分)已知函数,x∈R.(1)求f(x)的最小正周期和最小值;(2)已知,,,求f(β)的值.参考答案:考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单调性.专题:计算题.分析:(1)由辅助角公式对已知函数化简可得,,结合正弦函数的性质可求周期、函数的最大值(2)由已知利用和角与差角的余弦公式展开可求得cosαcosβ=0,结合已知角α,β的范围可求β,代入可求f(β)的值.解答:解:(1)∵=sinxcos=∴,∴T=2π,f(x)max=2(2)∵∴cosαcosβ=0∵,∴点评:本题主要考查了辅助角公式在三角函数的化简中的应用,正弦函数的性质的应用,两角和与差的余弦公式的应用.21.(本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,DM⊥PC,垂足为M.(1)求证:BD⊥平面PAC.(2)求证:平面MBD⊥平面PCD.
参考答案:
证明:(1)连结AC,∵底面ABCD是正方形∴BD⊥AC,
┅┅┅┅┅┅┅┅┅2分∵PA⊥底面ABCD,BD?平面ABCD,┅┅┅┅┅┅┅┅┅3分∴PA⊥BD,
┅┅┅┅┅┅┅┅┅4分∵PAAC=A
┅┅┅┅┅┅┅┅┅5分∴BD⊥平面PAC.┅┅┅┅┅┅┅┅┅6分
(2)由(1)知BD⊥平面PAC
┅┅┅┅┅┅┅┅┅7分∵PC?平面PAC
┅┅┅┅┅┅┅┅┅┅┅┅┅8分∴BD⊥PC
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅9分∵DM⊥PCBDDM=D
┅┅┅┅┅┅┅┅┅┅┅┅┅10分∴PC⊥平面DBM
┅┅┅┅┅┅┅┅┅┅┅┅┅11分∵PC?平面PDC,∴平面MBD⊥平面PCD.┅┅┅┅┅┅┅┅┅┅┅┅┅12分略22.(本小题满分12分)已知函数. (Ⅰ)求函数的最小正周期及单调递增区间; (Ⅱ)若,求函数的值域.参考答案: 解:(Ⅰ)f(x)=cosx(sinx+cos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借款合同面签制度
- 房屋租赁合同优先购买权条款
- 房子赠与未成年子女合同
- 2023年中国农业科学院特产研究所引进考试真题
- plc课程设计含状态转移图
- 2023年陕西事业单位教师类考试真题
- 幼儿园管理顾问的个人总结大全(20篇)
- cng加气母站课程设计
- 我的小伙伴教学设计
- bim课程设计问答题目
- GB/T 19342-2024手动牙刷一般要求和检测方法
- 洗车场清淤合同范本
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- QC080000培训资料课件
- 《研学旅行课程设计》课件-学习情境三 研之有方-研学课程教学设计
- 音乐教师职业生涯发展报告
- 薄膜材料 第五章薄膜的形成、生长与结构
- 3--碎石土路基填筑施工工法(完整版)
- 英语四级单词表4500.xls
- 圆幂定理教案
评论
0/150
提交评论