版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市2013届高三上学期10月摸底考试数学试题高考资源网(),您身边的高考专家欢迎广大教师踊跃来稿,稿酬丰厚。高考资源网(),您身边的高考专家欢迎广大教师踊跃来稿,稿酬丰厚。江苏省盐城市2013届高三上学期10月摸底考试数学试题(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.已知集合,则=▲.2.若复数(为虚数单位)是纯虚数,则实数的值为▲.3.某校对全校1000名学生进行课外体育锻炼情况调查,按性别用分层抽样法抽取一个容量为100的样本,已知女生抽了51人,那么该校的男生总数是▲.4.已知甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲排在乙前面值班的概率是▲.5.执行如图所示的算法流程图,则输出的结果是=▲.6.已知向量,且向量与垂直,则实数的值为▲.7.已知数列满足,则其前99项和=▲.8.设是两条不同的直线,是一个平面,有下列四个命题:①若,则;②若∥,则;③若∥,则∥;④若∥,∥,则∥.其中真命题是▲(写出所有真命题的序号).9.函数的单调递减区间为▲.10.已知函数满足,且的最小值为,则正数的值为▲.11.已知,,则的值为▲.12.当且仅当时,圆上恰好有两点到直线的距离为1,则的值为大利润是多少万元?18.(本小题满分16分)已知数列的前项和为,且.(1)若为等差数列,且.①求该等差数列的公差;②设数列满足,则当为何值时,最大?请说明理由;(2)若还同时满足:①为等比数列;②;③对任意的正整数,存在自然数,使得、、依次成等差数列,试求数列的通项公式.19.(本小题满分16分)如图,直线与椭圆:()交于两点,与轴和轴分别交于点和点,点是点关于轴的对称点,直线与轴交于点.(1)若点为(6,0),点为(0,3),点,恰好是线段的两个三等分点.①求椭圆的方程;②过坐标原点引外接圆的切线,求切线长;(2)当椭圆给定时,试探究是否为定值?若是,请求出此定值;若不是,请说明理由.20.(本小题满分16分)设是偶函数,且当时,.当时,求的解析式;设函数在区间上的最大值为,试求的表达式;若方程有四个不同的实根,且它们成等差数列,试探求与满足的条件.盐城市2013届高三年级摸底考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.2.13.4904.5.156.7.98.②9.10.11.12.213.6414.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.解:(1)由题意,得……………5分所以………7分(2)因为,所以…11分所以………14分16.证明:(1)、分别为、的中点,∥……4分又面,面,直线∥面……7分(2),点为的中点,……………9分又面,面,,面………12分又面面⊥面…………14分17.解:(1)设四个季度的进货资金分别为,则=…………………3分所以当时,最小…………5分故所求的季拟合进货资金万元…7分(2)因为今年第一季度的进货资金为万元,设用于普通冰箱的进货资金为万元,则用于节能冰箱的进货资金为万元,从而销售冰箱获得的利润为()…………10分令,则………12分当且仅当,即时,取得最大值为17.5,所以当用于节能冰箱的进货资金为30万元,用于普通冰箱的进货资金为20万元时,可使销售冰箱的利润最大,最大为17.5万元…………14分(说明:第(2)小题用导数方法求解的,类似给分)18.解:(1)①由题意,得……2分解得……4分②由①知,所以,则……………6分因为…8分所以,且当时,单调递增,当时,单调递减,故当或时,最大……10分(2)因为是等比数列,则,又,所以或…………12分从而或或或.又因为、、依次成等差数列,得,而公比,所以,即,从而(*)………………14分当时,(*)式不成立;当时,解得;当时,(*)式不成立;当时,(*)式不成立.综上所述,满足条件的……16分19.解:(1)①设点,由题意知,则有,解得,即,又点为、中点,可得点………………2分,解得:,椭圆的方程为…………5分②由点,可求得线段的中垂线方程为,令,得.设外接圆的圆心为,半径为,可知,…7分切线长为………………9分(2)设点,,则.所以直线的方程为,令,得,即点,同理………13分,又,得,得,两式相减得,即,当椭圆给定时,为定值…16分20.解:(1)当时,…………2分同理,当时,,所以,当时,的解析式为……4分(2)因为是偶函数,所以它在区间上的最大值即为它在区间上的最大值,①当时,在上单调递增,在上单调递减,所以…………5分②当时,在与上单调递增,在与上单调递减,所以此时只需比较与的大小.当时,≥,所以………………6分当时,<,所以……7分③当时,在与上单调递增,在上单调递减,且<,所以………8分综上所述,………9分(3)设这四个根从小到大依次为.①当方程在上有四个实根时,由,且,得,从而,且要求对恒成立…………10分(A)当时,在上单调递减,所以对恒成立,即适合题意……11分(B)当时,欲对恒成立,只
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津市八校联考2024-2025学年高三上学期1月期末生物试题(含答案)
- 山东省枣庄市滕州市2024-2025学年七年级上学期1月期末考试地理试卷(无答案)
- 河北省邯郸市2024-2025学年高三(上)模拟预测联考物理试卷(八)(含答案)
- 28报关员资格全国统考试试题A卷与答案
- 2024物业管理与社区文化活动策划合作协议3篇
- 2024股权转让中的业务承接协议
- 2024年钢筋工程劳务分包专用合同
- 2024遗产分割与遗产传承管理及权益分配协议3篇
- 2025年度冷链物流安全运输服务质量认证合同3篇
- 福建省南平市莒口中学2021-2022学年高一语文模拟试题含解析
- 湖北省学前教育技能高考《幼儿心理》历年考试真题题库(含答案)
- 山东师范大学《文学评论写作》2021-2022学年第一学期期末试卷
- 抓斗课件教学课件
- 2024-2025学年人教版初一上学期期末英语试题与参考答案
- 文学描写辞典
- 2024年决战行测5000题言语理解与表达(培优b卷)
- 2024年废料清运与回收协议
- 企业办公区反恐防爆应急预案
- 2024年麻醉科年终总结
- 浙江省台州市2023-2024学年高二上学期期末考试 物理 含答案
- GB/T 44481-2024建筑消防设施检测技术规范
评论
0/150
提交评论