




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十六章反比例函数26.2实际问题与反比例函数目标导航目标导航课程标准课标解读能用反比例函数解决简单实际问题。能够掌握用反比例函数解决实际问题的一般步骤,从而列出方程,解决实际问题知识精讲知识精讲知识点实际问题与反比例函数用反比例函数解决实际问题的一般步骤:①定:审题确定出问题中的两个变量,并用字母表示出来。②求:用待定系数法或列方程法求出函数解析式,并求出自变量的取值范围。③解:利用反比例函数的图象及其性质去分析问题、解决问题,得到数学结论。④答:写出实际问题的答案。【微点拨】①待定系数法:若题目中已知是反比例函数,则设其解析式为(),然后将x,y的值代入,求出k值即可。②列方程法:若题目中不知是什么函数,通常列出关于两个变量x,y的方程,变形即可得到函数解析式。【即学即练1】某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A. B. C. D.【即学即练2】已知近视眼镜的度数y(度)与镜片焦距x(米)之间成反比例函数关系,如图所示,则眼镜度数y与镜片焦距x之间的函数关系式是()A. B. C. D.能力拓展能力拓展考法实际问题与反比例函数【典例1】为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是(
)A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元【典例2】学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温(℃)与通电时间成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是(
)A.水温从20℃加热到100℃,需要B.水温下降过程中,y与x的函数关系式是C.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水D.水温不低于30℃的时间为分层提分分层提分题组A基础过关练1.两个物体A,B所受的压强分别为,(都为常数).它们所受压力F与受力面积S的函数关系图象分别是射线、,已知压强,则(
)A. B. C. D.2.在压力不变的情况下,某物体所受到的压强P(Pa)与它的受力面积S()之间成反比例函数关系,且当S=0.1时,P=1000.下列说法中,错误的是(
)A.P与S之间的函数表达式为B.当S=0.4时,P=250C.当受力面积小于时,压强大于500PaD.该物体所受到的压强随着它的受力面积的增大而增大3.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,其图像经过点A(如图).当气球内的气压大于144kPa时,气球将爆炸,为确保气球不爆炸,该气球的体积应(
)A.不大于 B.不小于 C.不大于 D.不小于4.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点在其图象上,则当力达到10N时,物体在力的方向上移动的距离是(
)A.2.4m B.1.2m C.1m D.0.5m5.根据物理学知识,在压力不变的情况下,某物体承受的压强是它的受力面积的反比例函数,其函数图象如图所示,当时,该物体承受的压强p的值为_________Pa.6.研究发现,近视镜的度数y(度)与镜片焦距x(米)成反比例函数关系,小明佩戴的400度近视镜片的焦距为0.25米,经过一段时间的矫正治疗加之注意用眼和健康,现在镜片焦距为0.5米,则小明的近视镜度数可以调整为__________度.7.一辆汽车从甲地开往乙地,随着汽车平均速度的变化,到达时所用的时间的变化情况如图所示,那么行驶过程中与的函数表达式为________.8.如图,一辆汽车匀速通过某段公路,所需时间与行驶速度的图像为双曲线的一段,若这段公路行驶速度不得超过,则该汽车通过这段公路最少需要_____h.9.近视镜的度数y(度)与镜片焦距x(m)成反比例函数关系,已知400度近视眼镜镜片的焦距为0.25m.(1)求y与x之间的函数关系式.(2)当近视眼镜的度数时,求近视眼镜镜片焦距x的值.10.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数,其图像如图所示.(1)求这个函数的解析式;(2)当气体体积为时,气压是多少?(3)当气球内的气压大于时,气球将爆炸,为了安全起见,气体的体积应不小于多少?题组B能力提升练1.某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的与的数据如表:时间分钟含药量毫克则下列图象中,能表示与的函数关系的图象可能是(
)A. B.C. D.2.为做好疫情防控工作,学校对教室进行喷雾消毒,已知喷雾阶段教室内每立方米空气中含药量与时间成正比例,喷雾完成后y与x成反比例(如图所示).当每立方米空气中含药量低于时,对人体方能无毒害作用,则下列说法中正确的是(
)A.每立方米空气中含药量从上升到需要B.每立方米空气中含药量下降过程中,y与x的函数关系式是C.为了确保对人体无毒害作用,喷雾完成后学生才能进入教室D.每立方米空气中含药量不低于的持续时间为3.当今,各种造型的气球深受小朋友喜爱.如图1是“冰墩墩”造型的气球,气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V(m3)的反比例函数,其图象如图2所示,当气球内的气压大于200kPa时,气球将爆炸,为了安全起见,气球的体积V的范围为()A.V>0.48m3 B.V<0.48m3 C.V≥0.48m3 D.V≤0.48m34.如图,二次函数y=ax2+bx+c与反比例函数y=的图象相交于点A(﹣1,y1)、B(1,y2)、C(3,y3)三个点,则不等式ax2+bx+c>的解集是(
)A.﹣1<x<0或1<x<3 B.x<﹣1或1<x<3C.﹣1<x<0或x>3 D.﹣1<x<0或0<x<15.密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:)变化时,气体的密度(单位:)随之变化.已知密度与体积V是反比例函数关系,它的图像如图所示.则当时,二氧化碳的密度为___________.6.如图是函数和函数在第一象限部分的图象,则时,使成立的x的取值范围是_____.7.某品牌饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中,水温y℃与开机时间x分满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y℃与开机时间x分成反比例关系),当水温降至20℃时,饮水机又自动开始加热,……,重复上述程序(如图所示),那么开机后50分钟时,水的温度是______℃.8.如图是4个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~4的整数),函数()的图象为曲线.若曲线使得,这些点分布在它的两侧,每侧各2个点,则的取值范围是______.9.某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中段为反比例函数图象的一部分,设公司销售这种电子产品的年利润为w(万元).(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;并求出年利润的最大值.10.商场出售一批进价为2元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量y(张)之间有如下关系:x/元3456y/张20151210(1)写出y关于x的函数解析式______;(2)设经营此贺卡的日销售利润为W(元),试求出W关于x的函数解析式,若物价局规定此贺卡的日销售单价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润,并求出最大日销售利润.题组C培优拔尖练1.如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到.若反比例函数的图象恰好经过的中点D,则k的值是()A.9 B.12 C.15 D.182.已知:如图,在平面直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB、AC相交于点D,双曲线(x>0)经过点D,交BC的延长线于点E,且OB·AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②点E的坐标是(4,8);③sin∠COA=;④AC+OB=12.其中正确的结论有(
)A.3个 B.2个 C.1个 D.0个3.如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A. B. C.1 D.4.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A. B.6 C.3 D.125.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为_____.6.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为___.7.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,P(2a,a)是反比例函数y=的图象与正方形的边的一个交点,则图中阴影部分的面积是________.8.如图是某种电子理疗设备工作原理的示意图,其开始工作时的温度是20℃,然后按照一次函数关系一直增加到70℃,这样有利于打通病灶部位的血液循环,在此温度下再沿反比例函数关系缓慢下降至35℃,然后在此基础上又沿着一次函数关系一直将温度升至70℃,再在此温度下沿着反比例函数关系缓慢下降至35℃,如此循环下去.(1)的值为________;(2)如果在分钟内温度大于或等于50℃时,治疗效果最好,则维持这个温度范围的持续时间为________分钟.9.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米()的反比例函数,其图象如下图所示所示.请根据图象中的信息解决下列问题:(1)求y与x之间的函数表达式;(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为多少米?(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米?10.某电子科技公司研发出一套学习软件,并对这套学习软件在24周的销售时间内,做出了下面的预测:设第x周该软件的周销售量为T(单位:千套),当0<x≤8时,T与x+4成反比;当8<x≤24时.T﹣2与x成正比,并预测得到了如表中对应的数据.设第x周销售该软件每千套的利润为K(单位:千元),K与x满足如图中的函数关系图象:x/周824T/千套1026(1)求T与x的函数关系式;(2)观察图象,当12≤x≤24时,K与x的函数关系式为________.(3)设第x周销售该学习软件所获的周利润总额为y(单位:千元),则:①在这24周的销售时间内,是否存在所获周利润总额不变的情况?若存在,求出这个不变的值;若不存在,请说明理由.②该公司销售部门通过大数据模拟分析后认为,最有利于该学习软件提供售后服务和销售的周利润总额的范围是286≤y≤504,求在此范围内对应的周销售量T的最小值和最大值.11.习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:类型占地面积可供使用幢数造价(万元)A15181.5B20302.1(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:,若每个B型处理点的垃圾月处理量是A型处理点的1.2倍,该街道建造的每个A型处理点每月处理量为多少吨时,才能使该街道每吨垃圾的月处理成本最低?(精确到0.1)12.为了探索函数的图象与性质,我们参照学习函数的过程与方法,列表:x…12345…y…2…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年保险行业数字化理赔服务与保险理赔技术创新报告
- 2025年保险理赔服务数字化在保险消费者教育中的角色与策略报告
- 北京交通运输职业学院《大众健身流行课-普拉提》2023-2024学年第二学期期末试卷
- DB14-T 3461-2025 煤炭生产企业节能诊断技术指南
- 2025年项目投资合作协议书
- 2025年系统合作协议
- 2025年物业装修协议
- 2025年委托上牌协议
- 保山学院《热工基础2》2023-2024学年第二学期期末试卷
- 2025至2031年中国蒸气加热式气化器行业投资前景及策略咨询研究报告
- 幼儿园食谱播报
- Minitab常用图表制作
- 县医院麻醉计划书
- 小学生作文方格纸
- 高级宏观经济学讲义(南开大学-刘晓峰教授-罗默的教材)【完整版】
- 肺胀中医护理查房-课件
- 第十六课奇妙的图形(课件)(20) 赣美版美术四年级下册
- 2023届绵阳市涪城区数学六年级第二学期期末统考试题含解析
- 诗意的人学西方文学名著欣赏学习通期末考试答案2023年
- 急诊临床思维-课件
- 立德修身诚信为本
评论
0/150
提交评论