




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20232024高一数学必修第一册20232024高一数学必修第一册专题11函数的应用(一)№考向解读专题11函数的应用(一)№考向解读➊考点精析➋真题精讲➌题型突破➍专题精练第三章函数的概念及性质专题11函数的应用(一)→➊考点精析←函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)分段函数模型f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(f1x,x∈D1,,f2x,x∈D2,,……,,fnx,x∈Dn))幂函数模型f(x)=axα+b(a,b,α为常数,a≠0)1一次函数模型的应用一次函数的一般形式:,其定义域是R,值域是R.2二次函数模型的应用①二次函数的一般形式是其定义域为R.②若,则二次函数在时有最小值;若,则二次函数在时有最大值.③建立二次函数模型解应用题的步骤和建立一次函数模型解应用题的步骤一样:读题,解题,建模,解答.3解决实际应用问题①解决实际应用问题的过程②解决实际应用问题的步骤:第一步:阅读理解,认真审题读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息.第二步:引进数学符号,建立数学模型设自变量为x,函数为y,并用x表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果.第四步:再转译为具体问题作出解答.③函数模型的综合应用函数的应用题是利用函数模型解决实际问题.在数学建模的过程中有若干个有着明显区别的处理阶段:第一阶段,对于面临的实际问题,我们首先需要认真审题,熟悉实际问题的背景知识,明确研究的对象和研究的目的.第二阶段,辩识并列出与问题有关的因素,明确模型中需要考虑的因素以及它们在问题中的作用,以变量和参数的形式表示这些因素.第三阶段,运用数学知识和数学上的技能技巧来描述问题中变量之间的关系,通常它可以用数学表达式来描述.第四阶段,利用数学知识将得到的数学模型予以解答,求出结果.第五阶段,解释数学模型的结果.根据实际问题建立函数解析式,然后利用求函数最值的方法解决最大、最省等问题.求函数最值的常用方法有:①配方法;②判别式法;③换元法;④数形结合法;⑤函数的单调性法等.→➋题型突破←【题型一】一次函数1.据调查,某存车处在某星期日的存车量为4000辆次,其中电动车存车费是每辆一次0.3元,自行车存车费是每辆一次0.2元.若自行车存车数为x辆次,存车总收入为y元,则y关于x的函数关系式是()A.yx+800(0≤x≤4000)B.yx+1200(0≤x≤4000)C.yx+800(0≤x≤4000)D.yx+1200(0≤x≤4000)【答案】D【解析】因为自行车辆,所以电动车车辆,存车总收入,故选:D.2.(杭州新东方高中数学试卷388)某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为_________.【答案】.【解析】设每件售价元时,售出件,设,因为,所以①,因为,所以②,解由①②组成的方程组得,,所以.由.故答案为:.【题型二】二次函数3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品万件时的生产成本为(万元).一万件售价为万元,为获取更大利润,该企业一个月应生产该商品数量为________万件.【答案】【解析】设利润为,则,当时,有最大值,故答案为:18.4.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,二次函数图象(部分)刻画了该公司年初以来累积利润(万元)与销售时间(月)之间的关系(即前个月的利润总和与之间的关系).根据图象提供的信息解答下列问题:(1)由已知图象上的三点坐标,求累积利润(万元)与时间(月)之间的函数关系式;(2)求截止到第几个月末公司累积利润可达到万元;(3)求第八个月公司所获得的利润.【答案】(1);(2)第十个月;(3)利润为万元.【解析】(1)设与的函数关系式为.由题中函数图象过点、、,得,解得,因此,所求函数关系式为;(2)把代入,得,整理得,,解得,因此,截止到第十个月末公司累积利润可达到万元;(3)第八个月公司所获得的利润为(万元).因此,第八个月公司所获得的利润为万元.【题型三】分段函数5.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为G()(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本);销售收入R()(万元)满足:,假定该产品产销平衡,那么根据上述统计规律:(1)要使工厂有赢利,产量应控制在什么范围?(2)工厂生产多少台产品时,可使赢利最多?【答案】(1)产品应控制在大于100台,小于820台的范围内;(2)当工厂生产400台产品时,赢利最多【解析】依题意,.设利润函数为,则.(1)要使工厂有赢利,即解不等式,当时,解不等式.即.∴∴,当时,解不等式,得,∴,综上所述,要使工厂赢利,应满足,即产品应控制在大于100台,小于820台的范围内.(2)时,故当时,有最大值3.6.而当时,所以,当工厂生产400台产品时,赢利最多.6.国庆期间,某旅行社组团去风景区旅游,若每团人数不超过30,游客需付给旅行社飞机票每张900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.旅行社需付给航空公司包机费每团15000元.(1)写出飞机票的价格y(单位:元)关于人数x(单位:人)的函数关系式;(2)每团人数为多少时,旅行社可获得最大利润?【答案】(1);(2)当每团人数为60时,旅行社可获得最大利润.【解析】(1)由题意,得即.(2)设旅行社获利S(x)元,则,即因为S(x)=900x-15000在区间(0,30]上为增函数,所以当x=30时,S(x)取最大值12000元,又S(x)=-10(x-60)2+21000在区间(30,75]上,当x=60时,S(x)取得最大值21000.故当每团人数为60时,旅行社可获得最大利润.【题型四】基本不等式7.(多选)某公司一年购买某种货物900吨,现分次购买,若每次购买x吨,运费为9万元/次,一年的总储存费用为4x万元,要使一年的总运费与总储存费用之和最小,则下列说法正确的是()A.时费用之和有最小值 B.时费用之和有最小值C.最小值为万元 D.最小值为万元【答案】BD【解析】一年购买某种货物900吨,若每次购买x吨,则需要购买次,运费是9万元/次,一年的总储存费用为万元,所以一年的总运费与总储存费用之和为,因为,当且仅当,即时,等号成立,所以当时,一年的总运费与总储存费用之和最小为万元,故选:BD8.经市场调查,新街口某新开业的商场在过去一个月内(以30天计),顾客人数(千人)与时间(天)的函数关系近似满足(),人均消费(元)与时间(天)的函数关系近似满足(1)求该商场的日收益(千元)与时间(天)(,)的函数关系式;(2)求该商场日收益的最小值(千元).【答案】(1);(2)千元【解析】(1)根据该商场的日收益=顾客人数×人均消费的钱数得w(t)与t的解析式;(2)根据第一问得到w(t)为分段函数,分别求出各段的最值,第一段运用基本不等式求出最值,第二段是一个递减的一次函数求出最值比较即可(1)(2)时,单调递增,最小值在处取到,;时,单调递减,最小值在时取到,单调递减,最小值在时取到,则最小值为,由,可得最小值为.答:该商场日收益的最小值为千元.→➌专题精练←1.(2022·全国·高一专题练习)甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是(
)A.甲比乙先出发 B.乙比甲跑的路程多C.甲比乙先到达终点 D.甲、乙两人的速度相同2.(多选题)(2022·全国·高一课时练习)y(km)与时间x(min)的关系,下列结论正确的是(
)A.甲同学从家出发到乙同学家走了60minB.甲从家到公园的时间是30minC.甲从家到公园的速度比从公园到乙同学家的速度快D.当0≤x≤30时,y与x的关系式为y=x3.(2022·全国·高一专题练习)已知函数是定义在上的奇函数,当时,,若,,则实数a的取值范围为(
)A. B. C. D.4.(2021·临朐县实验中学高一月考)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三二税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何?”其意思为:今有人持金出五关,第1关收税金为持金的,第2关收税金为剩余金的,第3关收税金为剩余金的,第4关收税金为剩余金的,第5关收税金为剩余金的,5关所收税金之和恰好重1斤,则此人总共持金()A.2斤 B.斤 C.斤 D.斤5.(2021·全国高一课时练习)某公司在甲、乙两地同时销售一种品牌车,销售辆该品牌车的利润(单位:万元)分别为和.若该公司在两地共销售15辆,则能获得的最大利润为()A.90万元 B.60万元 C.120万元 6.(2021·浙江)用一段长为的铁丝围成一个矩形模型,则这个模型的最大面积为A. B. C. D.7.(3.4函数的应用【新教材】人教A版(2019)高中数学必修第一册限时作业)如图,有一长米,宽米的矩形地块,物业计划将其中的矩形建为仓库,要求顶点在地块对角线上,分别在边上,其他地方建停车场和路,设米.则矩形的面积关于的函数解析式为_________.8.(2022·全国·高一课时练习)现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取粒红豆,乙每次取粒白豆,同时进行,当红豆取完时,白豆还剩粒;第二轮,甲每次取粒红豆,乙每次取粒白豆,同时进行,当白豆取完时,红豆还剩粒.则红豆和白豆共有________粒.9.(2020·全国高一课时练习)某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.旅游点规定:每辆自行车的日租金不低于3元并且不超过20元,每辆自行车的日租金x元只取整数,用y表示出租所有自行车的日净收入.(日净收入即一日中出租的所有自行车的总收入减去管理费用后的所得)(1)求函数的解析式;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?10.(2022·全国·高一课时练习)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益与投资额成正比,其关系如图1;投资股票等风险型产品的年收益与投资额的算术平方根成正比,其关系如图2.(1)分别写出两种产品的年收益和的函数关系式;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?11.(2021·阜新市第二高级中学高一期末)通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律\left(f(t)越大,表明学生注意力越集中),经过实验分析得知:(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?12.(2022·全国·高一专题练习)首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为,且处理每吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?13.(2022·河南·范县第一中学高一阶段练习)某厂生产某种零件,每个零件的成本为元,出厂单价定为元,该厂为鼓励销售商订购,决定当一次订购量超过个时,每多订购一个,订购的全部零件的出厂单价就降低元,但实际出厂单价不能低于元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为41元?(2)设一次订购量为个,零件的实际出厂单价为元,写出函数的表达式;(3)当销售商一次订购个零件时,该厂获得的利润是多少元?(工厂售出一个零件的利润=实际出厂单价成本)14.(2022·全国·高一课时练习)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出血的护理措施
- 超市员工保密协议书
- 驿站转让违约协议书
- 餐厅经营股东协议书
- 铁路应聘就业协议书
- 兄弟俩共同分家协议书
- 餐饮项目外包协议书
- 道路合作施工协议书
- 餐厅物业转让协议书
- 裁员赔偿保密协议书
- 大学写作智慧树知到期末考试答案章节答案2024年丽水学院
- QBT 2530-2001 木制柜行业标准
- 卫生监督乡村医生培训课件
- 医院保安服务项目实施方案
- 《槟榔的危害》课件
- 高考前家长会课件
- 外阴及阴道炎症护理课件
- 2024年中国智慧港口行业市场全景评估及未来投资趋势预测报告(智研咨询)
- 围产期奶牛的饲养管理(内训)
- 2024年江苏武进经济发展集团招聘笔试参考题库含答案解析
- 音视频系统培训资料-(内部)
评论
0/150
提交评论