版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西防城港市防城区港市2024年中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知a=(+1)2,估计a的值在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间2.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个 B.3个 C.4个 D.5个3.在下面的四个几何体中,左视图与主视图不相同的几何体是()A. B. C. D.4.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为()A.1 B. C.2 D.25.下列博物院的标识中不是轴对称图形的是()A. B.C. D.6.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135° B.120° C.60° D.45°7.已知一元二次方程有一个根为2,则另一根为A.2 B.3 C.4 D.88.如图所示的图形为四位同学画的数轴,其中正确的是()A. B.C. D.9.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为()A. B. C. D.10.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.不等式组的解集是_____________.12.正八边形的中心角为______度.13.若将抛物线y=﹣4(x+2)2﹣3图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐标是_____.14.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,……按此作法进行去,点Bn的纵坐标为(n为正整数).15.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.16.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为___________________________.17.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要____________根火柴.三、解答题(共7小题,满分69分)18.(10分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19.(5分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G(1)求证:直线AB是⊙O的切线;(2)求证:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.20.(8分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)21.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.22.(10分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)23.(12分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化简:÷(1﹣)24.(14分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
首先计算平方,然后再确定的范围,进而可得4+的范围.【详解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之间,故选D.【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.2、C【解析】
试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质3、B【解析】
由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.4、B【解析】
由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.【详解】解:∵点F是AC的中点,∴AF=CF=AC,∵将△CDE沿CE折叠到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故选B.【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.5、A【解析】
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误6、B【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选B.【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.7、C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6,解得α=1.考点:根与系数的关系.8、D【解析】
根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.9、D【解析】解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.10、B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=.
故选B.二、填空题(共7小题,每小题3分,满分21分)11、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式组的解集是x<-1.故答案是:x<-1.12、45°【解析】
运用正n边形的中心角的计算公式计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为,故答案为45°.【点睛】本题考查了正n边形中心角的计算.13、(﹣7,0)【解析】
直接利用平移规律“左加右减,上加下减”得出平移后的解析式进而得出答案.【详解】∵将抛物线y=-4(x+2)2-3图象向左平移5个单位,再向上平移3个单位,∴平移后的解析式为:y=-4(x+7)2,故得到的抛物线的顶点坐标是:(-7,0).故答案为(-7,0).【点睛】此题主要考查了二次函数与几何变换,正确掌握平移规律是解题关键.14、.【解析】寻找规律:由直线y=x的性质可知,∵B2,B3,…,Bn是直线y=x上的点,∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且A2B2=OA2=OB1=OA1;A3B3=OA3=OB2=OA2=OA1;A4B4=OA4=OB3=OA3=OA1;…….又∵点A1坐标为(1,0),∴OA1=1.∴,即点Bn的纵坐标为.15、12【解析】连接AO,BO,CO,如图所示:∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,∴∠AOB==60°,∠AOC==90°,∴∠BOC=30°,∴n==12,故答案为12.16、【解析】∵点A(2,0),点B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.设AC=m,PC=2m,.当点P在x轴的上方时,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).当点P在x轴的下方时,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P点坐标为或(4,4)或或(0,4)【点睛】本题考察了相似三角形的判定,相似三角形的性质,平面直角坐标系点的坐标及分类讨论的思想.在利用相似三角形的性质列比例式时,要找好对应边,如果对应边不确定,要分类讨论.因点P在x轴上方和下方得到的结果也不一样,所以要分两种情况求解.请在此填写本题解析!17、【解析】
根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成,……∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.三、解答题(共7小题,满分69分)18、证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19、(1)见解析;(2)见解析;(3).【解析】
(1)利用等腰三角形的性质,证明OC⊥AB即可;
(2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
(3)根据勾股定理和三角函数解答即可.【详解】证明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切线.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD•EG=OG•EF.(3)∵AB=4BD,∴BC=2BD,设BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【点睛】考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.20、米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四边形AECF为矩形,∴EC=AF,AE=CF.设这条河宽为x米,∴AE=CF=x.在Rt△AED中,∵PQ∥MN,∴在Rt△BCF中,∵EC=ED+CD,AF=AB+BF,解得∴这条河的宽为米.21、(1);(2).【解析】
(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.22、(1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ①寒假复习-专题04 燃烧与灭火 化石能源的利用 (教师版) 2025年九年级化学寒假衔接讲练 (人教版)
- 合成氨装置安全节能降碳固碳改造项目可行性研究报告写作模板-申批备案
- 二零二五年度农产品电商运营与有机肥推广合同3篇
- 2024物流分拣配送合同详解
- 二零二五年度个人产权房屋买卖带附属设施合同3篇
- 二零二五年度海洋运输货物保险合同(含附加责任险及第三方责任)3篇
- 2024版技术开发保密与知识产权归属规范化合同一
- 二零二五年度甲醇生产设备租赁合同范本3篇
- 二零二五年度国际环保技术转移与环保设备进口合同样本3篇
- 2024物联网农业技术服务外包合同
- (完整)领导干部任前廉政法规知识考试题库(含答案)
- 2025年国务院发展研究中心信息中心招聘2人高频重点提升(共500题)附带答案详解
- 人工智能算法模型定制开发合同
- 【MOOC期末】《形势与政策》(北京科技大学)期末慕课答案
- 2024年医疗健康知识科普视频制作合同3篇
- 2024年古董古玩买卖协议6篇
- QC/T 1209-2024汽车噪声与振动(NVH)术语和定义
- 安全风险隐患举报奖励制度
- 江苏省苏州市2023-2024学年高三上学期期末考试 数学 含答案
- 教学成果奖培育工作方案
- 药品省区经理管理培训
评论
0/150
提交评论