版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年中考数学一轮复习专题《三角形综合:全等与相似》高频考点训练(三)1.如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)如图1,若点D是AC的中点,求证:AD=CE;(2)如图2,若点D不是AC的中点,AD=CE是否成立?证明你的结论;(3)如图3,若点D在线段AC的延长线上,试判断AD与CE的大小关系,并说明理由.2.阅读材料:小明遇到这样一个问题:如图1,在△AC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.小明的想法:因为CD平分∠ACB,所以可利用“翻折”来解决该问题.即在BC边上取点E,使EC=AC,并连接DE(如图2).(1)如图2,根据小明的想法,回答下面问题:①△DEC和△DAC的关系是,判断的依据是;②△BDE是三角形;③BC的长为.(2)参考小明的想法,解决下面问题:已知:如图3,在△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2,求AD的长.3.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①若点M在DE上,连接MC且DC=DM,请判断△MCD的形状,并给出证明;②若点N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.4.在△ABC中,∠BAC=90°,AB=AC.点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.(1)如图1,当AD=AF时,求证:BD=CF;(2)如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)如图3,在(2)的条件下,当时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=,求DF的长.5.已知,△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)如图1,当B、C在AE的异侧时,求证:BD=DE+CE;(2)如图2,当B、C在AE的同侧时(BD<CE),问BD与DE、CE的关系如何,请予证明;(3)如图3,当B、C在AE的同侧时(BD>CE),其余条件不变,问BD与DE、CE的关系怎样?请直接写出结果,不需证明;(4)归纳(1)、(2)、(3),请用简洁的语言表述BD、DE、CE的关系.6.如图,以△ABC的两边AB,AC为边向外作等边△ABD和△ACE,DC,BE相交于点O.(1)求证:DC=BE;(2)求∠BOC的度数;(3)∠BAC的度数发生变化时,∠BOC的度数是否变化?若不变化,请求出∠BOC的度数;若发生变化,请说明理由.7.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.8.问题引入:(1)如图①所示,△ABC中,点O是∠ABC和∠ACB的平分线的交点,若∠A=α,则∠BOC=(用α表示):不用说明理由,直接填空.如图②所示,∠OBC=∠ABC,∠OCB=∠ACB,若∠A=α,则∠BOC=(用α表示),不用说明理由,直接填空.(2)如图③所示,∠OBC=∠DBC,∠OCB=∠ECB,若∠A=α,则∠BOC=(用α表示),填空并说明理由.9.如图,点O为直线AB上一点,将一个等腰直角三角尺(三个内角分别是90°、45°、45°)的直角顶点和另一个含30°角的直角三角尺的60°角顶点都放在O处.(1)如图①,∠AOM=°;(2)如图②,将等腰直角三角尺绕点O旋转一定角度到图②的位置,OM恰好平分∠EOB时,求出∠AOE和∠MOF的度数;(3)如图③,将等腰直角三角尺绕点O旋转一定角度到图③的位置,若∠AOE是∠MOF的3倍,则等腰直角三角尺所旋转的角∠BOF=°.10.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=27°,则∠ACD的度数是.拓展:如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别存CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP于点D、E.若AC=CB=13,BE=5,则DE=.应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连结AD、BE、AE.且使∠MCN=∠ADP=∠BEP.当AC=BC,CD=2DE,且S△CBE=8时,则△ACE的面积是.参考答案1.(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC,∵D为AC中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°∵∠ACB=∠E+∠CDE,∴∠CDE=30°=∠E,∴CD=CE,∵AD=DC,∴AD=CE;(2)成立,如图2,过D作DF∥BC,交AB于F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°﹣60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∴△BFD≌△DCE(AAS),∴CE=DF=AD,即AD=CE.(3)AD=CE.证明:如图3,过点D作DP∥BC,交AB的延长线于点P,∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,∵DB=DE,∴∠DBC=∠DEC,∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC,在△BPD和△DCE中,,∴△BPD≌△DCE(AAS),∴PD=CE,∴AD=CE.2.解:(1)如答图1,①在△ACD与△ECD中,,∴△ACD≌△ECD(SAS);②由①知,△ACD≌△ECD,∴AD=DE,∠A=∠DEC,∵∠A=2∠B,∴∠DEC=2∠B,∴∠B=∠EDB,∴BE=DE,∴△BDE是等腰三角形;③由①知,△ACD≌△ECD,则EC=AC=3.6,DE=AD=2.2.又∵BE=DE,∴BE=AD=2.2.∴BC=BE+EC=2.2+3.6=5.8.故答案是:①△ACD≌△ECD;SAS;②等腰;③5.8;(2)∵△ABC中,AB=AC,∠A=20°,∴∠ABC=∠C=80°,∵BD平分∠B,∴∠1=∠2=40°∠BDC=60°,如答图2,在BA边上取点E,使BE=BC=2,连接DE,则△DEB≌△DBC,∴∠BED=∠C=80°,∴∠4=60°,∴∠3=60°,在DA边上取点F,使DF=DB,连接FE,则△BDE≌△FDE,∴∠5=∠1=40°,BE=EF=2,∵∠A=20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3,∴AD=BD+BC=4.3.3.(1)证明:∵CB=CA,DB=DA,∴CD垂直平分线段AB,∴CD⊥AB.(2)①△MCD为等边三角形,理由如下:如图,连接MC,∵AC=BC,∴∠CBA=∠CAB,又∵∠ACB=90°,∴∠CBA=∠CAB=45°,又∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,∵AC=BC,∠CAD=∠CBD=15°,BD=AD,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴∠ACD=∠BCD=45°,∴∠CDE=60°,又∵DC=DM,∴△MCD为等边三角形;②∵∠CAD=15°,CE=CA,∴∠E=∠CAE=15°.当EN=EC时,∠ENC==82.5°或∠ENC=∠E=∠7.5°;当CE=CN时,点N与点A重合,此时∠ENC=∠E=15°;当EN=CN时,∠ENC=180°﹣2×15°=150°;所以∠CNE的度数为7.5°、15°、82.5°、150°.4.(1)①证明:如图1中,∵AB=AC,∴∠B=∠ACF,∵AD=AF,∴∠ADF=∠AFD,∴∠ADB=∠AFC,∴△ABD≌△ACF(AAS),∴BD=CF.(2)结论:∠ACE=90°.理由:如图2中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.(3)如图3中,连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴==,设EC=a,则AB=AC=3a,AK=3a﹣,∵DA=DE,DK⊥AE,∴AP=PE,∴AK=KE=3a﹣,∵EK2=CK2+EC2,∴(3a﹣)2=()2+a2,解得a=4或0(舍弃),∴EC=4,AB=AC=12,∴AE===4,∴DP=PA=PE=AE=2,EF=AE=,∴PF=EF=,∵∠DPF=90°,∴DF===5.5.证明:(1)∵∠BAC=90°,∴∠BAD+∠EAC=90°,又∵BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∠BAD+∠ABD=90°,∴∠ABD=∠EAC,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE=CE+DE,∴BD=DE+CE.(2)BD=DE﹣CE.理由如下:同理可证:△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE=CE+DE,∴BD=DE﹣CE.(3)BD=DE+CE,理由如下:∵∠BAC=90°,∴∠BAD+∠EAC=90°,又∵BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∠BAD+∠ABD=90°,∴∠ABD=∠EAC,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE=BD+CE,∴BD=DE+CE.(4)归纳(1)、(2)、(3)可知:当B、C在AE的异侧时,BD=DE+CE或CE=BD+DE;当B、C在AE的同侧时,BD=DE﹣CE.6.解:(1)∵△ADB和△AEC都是等边三角形,∴∠DAB=∠EAC=60°,AD=AB,AE=AC,∴∠DAC=∠BAE,在△DAC和△BAE中,AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS);∴DC=BE;(2)∵△DAC≌△BAE,∴∠ADC=∠ABE,∴∠ODB+∠OBD=∠ADB﹣∠ADC+∠ABD+∠ABE=∠ADB+∠ABD=120°,∴∠BOC=∠ODB+∠OBD=120°;(3)不变化,为120°,理由:∵由(2)可得∠BOC=∠ODB+∠OBD=120°;∴∠BOC和∠BAC大小无关.7.解:(1)如图①,延长CD,FE交于点M.∵AB=BC,EF∥BC,∴∠A=∠BCA=∠EFA,∴AE=EF,∴MF∥BC,∴∠MED=∠B,∠M=∠BCD,又∵∠FCM=∠BCM,∴∠M=∠FCM,∴CF=MF,又∵BD=DE,∴△MED≌△CBD(AAS),∴ME=BC,∴CF=MF=ME+EF=BC+AE,即AE+BC=CF;(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,BC=AE+CF,如图②,延长CD,EF交于点M.由①同理可证△MED≌△CBD(AAS),∴ME=BC,由①证明过程同理可得出MF=CF,AE=EF,∴BC=ME=EF+MF=AE+CF;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,AE=CF+BC.如图③,延长CD交EF于点M,由上述证明过程易得△MED≌△CBD(AAS),BC=EM,CF=FM,又∵AB=BC,∴∠ACB=∠CAB=∠FAE,∵EF∥BC,∴∠F=∠FCB,∴EF=AE,∴AE=FE=FM+ME=CF+BC;(3)CF=18或6,当DE=2AE=6时,图①中,由(1)得:AE=3,BC=AB=BD+DE+AE=15,∴CF=AE+BC=3+15=18;图②中,由(2)得:AE=AD=3,BC=AB=BD+AD=9,∴CF=BC﹣AE=9﹣3=6;图③中,DE小于AE,故不存在.故答案为18或6.8.解:(1)在△ABC中,∠A=α,∴∠ABC+∠ACB=180°﹣∠A=180°﹣α.如图①所示,∵OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB.∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣α)=180°﹣90°+α=90°+α;如图②所示,∵∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣α)=180°﹣60°+α=120°+α.故答案为:90°+α;120°+α.(2)∠BOC=120°﹣α,理由如下:∵∠OBC=∠DBC,∠OCB=∠ECB,∠A=α,∴∠BOC=180°﹣(∠OBC+∠OCB),=180°﹣(∠DBC+∠ECB),=180°﹣(∠A+∠ACB+∠ABC+∠A),=180°﹣(180°+∠A),=180°﹣60°﹣α,=120°﹣α.故答案为:120°﹣α.9.解:(1)∵∠MON=60°,∴∠AOM=180°﹣60°=120°,故答案为120;(2)由题意得∠BOM=∠EOM=∠BOE,∵∠BOM=60°,∴∠EOM=60°,∠BOE=120°∴∠AOE=180°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【初中生物】真菌-2024-2025学年七年级生物上册同步教学课件(人教版2024)
- 【初中生物】微生物的分布-2024-2025学年七年级生物上册同步备课课件(人教版2024)
- 2024就智能工厂建设与运营的合资合同
- 2024年度清雪业务承包合同
- 2024年度特许经营与加盟合同
- 2024建设工程的项目合作协议合同范本
- 2024个人小额贷款合同
- 2024股份合伙人合同范本
- 2024年工程设计合作伙伴协议
- 2024年度原材料采购担保合同
- 新时代大中小学思政课一体化建设研究
- 工业自动化系统集成项目验收方案
- 新教科版科学六年级上册全册实验汇总 (超全)
- 王洪图黄帝内经80课时讲稿
- 摊铺机司机班组级安全教育试卷
- 重症肌无力指南
- 限制被执行人驾驶令申请书
- 项目主要施工管理人员情况
- 个人借条电子版模板
- 关于学习“国语普通话”发声亮剑【三篇】
- 玻璃厂应急预案
评论
0/150
提交评论