版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
豫西名校2024年高三第四次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.若时,,则的取值范围为()A. B. C. D.3.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i4.已知定义在上的偶函数,当时,,设,则()A. B. C. D.5.在空间直角坐标系中,四面体各顶点坐标分别为:.假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点.那么完成这个工作所需要走的最短路径长度是()A. B. C. D.6.已知与分别为函数与函数的图象上一点,则线段的最小值为()A. B. C. D.67.已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为()A.3 B.2 C. D.8.若不相等的非零实数,,成等差数列,且,,成等比数列,则()A. B. C.2 D.9.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.10.已知直线,,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.12.若点x,y位于由曲线x=y-2+1与x=3围成的封闭区域内(包括边界),则A.-3,1 B.-3,5 C.-∞,-3二、填空题:本题共4小题,每小题5分,共20分。13.若,则=____,=___.14.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.15.若的展开式中各项系数之和为32,则展开式中x的系数为_____16.执行右边的程序框图,输出的的值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.18.(12分)设函数.(1)求不等式的解集;(2)若的最小值为,且,求的最小值.19.(12分)已知点,且,满足条件的点的轨迹为曲线.(1)求曲线的方程;(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.20.(12分)已知等差数列的前n项和为,,公差,、、成等比数列,数列满足.(1)求数列,的通项公式;(2)已知,求数列的前n项和.21.(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.22.(10分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若{an}是等比数列,则,
若,则,即成立,
若成立,则,即,
故“”是“”的充要条件,
故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.2、D【解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.【详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,,又在单调递增,,的取值范围为.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.3、B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.4、B【解析】
根据偶函数性质,可判断关系;由时,,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,,则,令则,当时,,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.5、C【解析】
将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边.易求得,由,知,由余弦定理知其中,∴故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.6、C【解析】
利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.7、C【解析】
设射线OA与x轴正向所成的角为,由三角函数的定义得,,,利用辅助角公式计算即可.【详解】设射线OA与x轴正向所成的角为,由已知,,,所以,当时,取得等号.故选:C.【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.8、A【解析】
由题意,可得,,消去得,可得,继而得到,代入即得解【详解】由,,成等差数列,所以,又,,成等比数列,所以,消去得,所以,解得或,因为,,是不相等的非零实数,所以,此时,所以.故选:A【点睛】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.9、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.10、C【解析】
先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.11、D【解析】
使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.12、D【解析】
画出曲线x=y-2+1与x=3围成的封闭区域,y+1x-2表示封闭区域内的点(x,y)【详解】画出曲线x=y-2+1与y+1x-2表示封闭区域内的点(x,y)和定点P(2,-1)设k=y+1x-2,结合图形可得k≥k由题意得点A,B的坐标分别为A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范围为-∞,-3故选D.【点睛】解答本题的关键有两个:一是根据数形结合的方法求解问题,即把y+1x-2二、填空题:本题共4小题,每小题5分,共20分。13、12821【解析】
令,求得的值.利用展开式的通项公式,求得的值.【详解】令,得.展开式的通项公式为,当时,为,即.【点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.14、【解析】
连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率.故答案为:【点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.15、2025【解析】
利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【点睛】本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.16、【解析】初始条件成立方;运行第一次:成立;运行第二次:不成立;输出的值:结束所以答案应填:考点:1、程序框图;2、定积分.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)根据椭圆的基本性质列出方程组,即可得出椭圆方程;(2)设点,,,由,,结合斜率公式化简得出,,即,满足,由的任意性,得出直线恒过一个定点.【详解】(1)依题意得,解得即椭圆:;(2)设点,,其中,由,得,即,注意到,于是,因此,满足由的任意性知,,,即直线恒过一个定点.【点睛】本题主要考查了求椭圆的方程,直线过定点问题,属于中档题.18、(1)或(2)最小值为.【解析】
(1)讨论,,三种情况,分别计算得到答案.(2)计算得到,再利用均值不等式计算得到答案.【详解】(1)当时,由,解得;当时,由,解得;当时,由,解得.所以所求不等式的解集为或.(2)根据函数图像知:当时,,所以.因为,由,可知,所以,当且仅当,,时,等号成立.所以的最小值为.【点睛】本题考查了解绝对值不等式,函数最值,均值不等式,意在考查学生对于不等式,函数知识的综合应用.19、(1)(2)存在,或.【解析】
(1)由得看成到两定点的和为定值,满足椭圆定义,用定义可解曲线的方程.(2)先讨论斜率不存在情况是否符合题意,当直线的斜率存在时,设直线点斜式方程,由,可得,再直线与椭圆联解,利用根的判别式得到关于的一元二次方程求解.【详解】解:设,由,,可得,即为,由,可得的轨迹是以为焦点,且的椭圆,由,可得,可得曲线的方程为;假设存在过点的直线l符合题意.当直线的斜率不存在,设方程为,可得为短轴的两个端点,不成立;当直线的斜率存在时,设方程为,由,可得,即,可得,化为,由可得,由在椭圆内,可得直线与椭圆相交,,则化为,即为,解得,所以存在直线符合题意,且方程为或.【点睛】本题考查求轨迹方程及直线与圆锥曲线位置关系问题.(1)定义法求轨迹方程的思路:应用定义法求轨迹方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解;(2)解决是否存在直线的问题时,可依据条件寻找适合条件的直线方程,联立方程消元得出一元二次方程,利用判别式得出是否有解.20、(1),();(2).【解析】
(1)根据是等差数列,,、、成等比数列,列两个方程即可求出,从而求得,代入化简即可求得;(2)化简后求和为裂项相消求和,分组求和即可,注意讨论公比是否为1.【详解】(1)由题意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①当时,.②当时,.【点睛】此题等差数列的通项公式的求解,裂项相消求和等知识点,考查了化归和转化思想,属于一般性题目.21、(1)曲线,曲线.(2).【解析】
(1)用和消去参数即得的极坐标方程;将两边同时乘以,然后由解得直角坐标方程.(2)过极点的直线的参数方程为,代入到和:中,表示出即可求解.【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《圆的周长正式》课件
- 人身意外伤害保险课件
- 深圳市福田区农林片区路边临时停车收费管理泊位规划方案公示课件
- 教师劳动合同(2篇)
- 2024屠户生猪代宰与屠宰废弃物资源化利用合同3篇
- 2024年度儿童广告代言项目聘用合同范本2篇
- 2024年度绿色环保产品广告合作与市场拓展合同3篇
- 2025年马鞍山道路货运驾驶员从业资格证考试
- 1.1 《子路、曾晳、冉有、公西华侍坐》(学案)-教案课件-部编高中语文必修下册
- 《电子商务运作体系》课件
- 浙江造价咨询收费计算器(2009)完整版
- 小学语文新课标跨学科学习任务群解读及教学建议
- 创新创业创造美好生活智慧树知到答案章节测试2023年青海师范大学
- 2023年军队文职-公共科目考试参考试题附带答案
- DB11T 382-2017建设工程监理规程
- 减少老年住院患者口服药缺陷次数的PDCA案例
- 燃油泵及总成试验标准
- 医共体成员单位绩效分配与考核指导方案20206
- 劳务分包的工程施工组织设计方案
- GB/T 9115.3-2000榫槽面对焊钢制管法兰
- GB/T 4310-2016钒
评论
0/150
提交评论