2024届浙江省金华市重点中学高考仿真卷数学试题含解析_第1页
2024届浙江省金华市重点中学高考仿真卷数学试题含解析_第2页
2024届浙江省金华市重点中学高考仿真卷数学试题含解析_第3页
2024届浙江省金华市重点中学高考仿真卷数学试题含解析_第4页
2024届浙江省金华市重点中学高考仿真卷数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省金华市重点中学高考仿真卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.52.已知复数满足,则的值为()A. B. C. D.23.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分不必要条件4.在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于()A. B. C. D.5.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q6.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()A. B. C. D.7.抛物线的焦点为,点是上一点,,则()A. B. C. D.8.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.9.已知为等比数列,,,则()A.9 B.-9 C. D.10.为计算,设计了如图所示的程序框图,则空白框中应填入()A. B. C. D.11.下列函数中,值域为R且为奇函数的是()A. B. C. D.12.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.400二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式在上恒成立,则的最大值为__________.14.已知,则_____。15.已知正方体ABCD-A1B1C1D1棱长为2,点P是上底面16.已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若关于的不等式的整数解有且仅有一个值,当时,求不等式的解集;(2)已知,若,使得成立,求实数的取值范围.18.(12分)在中,角所对的边分别为,若,,,且.(1)求角的值;(2)求的最大值.19.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.20.(12分)已知(1)若,且函数在区间上单调递增,求实数a的范围;(2)若函数有两个极值点,且存在满足,令函数,试判断零点的个数并证明.21.(12分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,,证明:.22.(10分)平面直角坐标系中,曲线:.直线经过点,且倾斜角为,以为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程与直线的参数方程;(2)若直线与曲线相交于,两点,且,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据复数的四则运算法则先求出复数z,再计算它的模长.【详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.2、C【解析】

由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.3、D【解析】

结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.4、A【解析】

设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.5、C【解析】

解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C6、C【解析】

根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.7、B【解析】

根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.8、C【解析】

分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).9、C【解析】

根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.10、A【解析】

根据程序框图输出的S的值即可得到空白框中应填入的内容.【详解】由程序框图的运行,可得:S=0,i=0满足判断框内的条件,执行循环体,a=1,S=1,i=1满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.故选:A.【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.11、C【解析】

依次判断函数的值域和奇偶性得到答案.【详解】A.,值域为,非奇非偶函数,排除;B.,值域为,奇函数,排除;C.,值域为,奇函数,满足;D.,值域为,非奇非偶函数,排除;故选:.【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.12、B【解析】

设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

分类讨论,时不合题意;时求导,求出函数的单调区间,得到在上的最小值,利用不等式恒成立转化为函数最小值,化简得,构造放缩函数对自变量再研究,可解,【详解】令;当时,,不合题意;当时,,令,得或,所以在区间和上单调递减.因为,且在区间上单调递增,所以在处取极小值,即最小值为.若,,则,即.当时,,当时,则.设,则.当时,;当时,,所以在上单调递增;在上单调递减,所以,即,所以的最大值为.故答案为:【点睛】本题考查不等式恒成立问题.不等式恒成立问题的求解思路:已知不等式(为实参数)对任意的恒成立,求参数的取值范围.利用导数解决此类问题可以运用分离参数法;如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(,或,)求解.14、【解析】

由已知求,再利用和角正切公式,求得,【详解】因为所以cos因此.【点睛】本题考查了同角三角函数基本关系式与和角的正切公式。15、π.【解析】

设三棱锥P-ABC的外接球为球O',分别取AC、A1C1的中点O、O1,先确定球心O'在线段AC和A1C1中点的连线上,先求出球O【详解】如图所示,设三棱锥P-ABC的外接球为球O'分别取AC、A1C1的中点O、O1由于正方体ABCD-A则△ABC的外接圆的半径为OA=2设球O的半径为R,则4πR2=所以,OO则O而点P在上底面A1B1由于O'P=R=41因此,点P所构成的图形的面积为π×O【点睛】本题考查三棱锥的外接球的相关问题,根据立体几何中的线段关系求动点的轨迹,属于中档题.16、【解析】

连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,,则,当点的横坐标时,,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)求解不等式,结合整数解有且仅有一个值,可得,分类讨论,求解不等式,即得解;(2)转化,使得成立为,利用不等式性质,求解二次函数最小值,代入解不等式即可.【详解】(1)不等式,即,所以,由,解得.因为,所以,当时,,不等式等价于或或即或或,故,故不等式的解集为.(2)因为,由,可得,又由,使得成立,则,解得或.故实数的取值范围为.【点睛】本题考查了绝对值不等式的求解和恒成立问题,考查了学生转化划归,分类讨论,数学运算的能力,属于中档题.18、(1);(2).【解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函数值域的方法即可得到答案.【详解】(1)因为,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因为,所以.(2)由(1)得,在中,,所以.因为,所以,所以当,即时,有最大值1,所以的最大值为.【点睛】本题考查正余弦定理解三角形,涉及到两角差的正弦公式、辅助角公式、向量数量积的坐标运算,是一道容易题.19、(1)见解析(2)【解析】

(1)由余弦定理及已知等式得出关系,再由正弦定理可得结论;(2)由余弦定理和已知条件解得,然后由面积公式计算.【详解】解:(1)由余弦定理得,由得到,由正弦定理得.因为,,所以.(2)由题意及余弦定理可知,①由得,即,②联立①②解得,.所以.【点睛】本题考查利用正余弦定理解三角形.考查三角形面积公式,由已知条件本题主要是应用余弦定理求出边.解题时要注意对条件的分析,确定选用的公式.20、(1)(2)函数有两个零点和【解析】试题分析:(1)求导后根据函数在区间单调递增,导函数大于或等于0(2)先判断为一个零点,然后再求导,根据,化简求得另一个零点。解析:(1)当时,,因为函数在上单调递增,所以当时,恒成立.[来源:Z&X&X&K]函数的对称轴为.①,即时,,即,解之得,解集为空集;②,即时,即,解之得,所以③,即时,即,解之得,所以综上所述,当函数在区间上单调递增.(2)∵有两个极值点,∴是方程的两个根,且函数在区间和上单调递增,在上单调递减.∵∴函数也是在区间和上单调递增,在上单调递减∵,∴是函数的一个零点.由题意知:∵,∴,∴∴,∴又=∵是方程的两个根,∴,,∴∵函数图像连续,且在区间上单调递增,在上单调递减,在上单调递增∴当时,,当时,当时,∴函数有两个零点和.21、(1)见解析;(2)见解析【解析】

(1)求得的导函数,对分成两种情况,讨论的单调性.(2)由(1)判断出的取值范围,根据韦达定理求得的关系式,利用差比较法,计算,通过构造函数,利用导数证得,由此证得,进而证得不等式成立.【详解】(1).当时,,此时在上单调递减;当时,由解得或,∵是增函数,∴此时在和单调递减,在单调递增.(2)由(1)知.,,,不妨设,∴,,令,∴,∴在上是减函数,,∴,即.【点睛】本小题主要考查利用导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论