版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市明达中学2022-2023学年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()A.
B.
C.
D.参考答案:B略2.设函数,则等于
A.0
B.
C.
D.参考答案:B略3.在2017年3月15日,某物价部门对本市5家商场某商品一天的销售额及其价格进行调查,5家商场的价格与销售额之间的一组数据如下表所示:价格元(单位:元)89.51010.512销售额(单位:千元)1210864由散点图可知,销售额与价格之间有较好的线性相关关系,且回归直线方程是,则(
)A.-24 B.35.6 C.40 D.40.5参考答案:C4.等差数列{an}的前n项和为Sn,若S3=3,S6=7,则S9的值为(
)A.12 B.15 C.11 D.8参考答案:A【考点】等差数列的前n项和;等差数列的性质.【专题】等差数列与等比数列.【分析】由等差数列的性质可得S3、S6﹣S3、S9﹣S6仍成等差数列,故有
2(7﹣3)=3+(S9﹣7),由此可得S9的值.【解答】解:等差数列{an}的前n项和为Sn,已知S3=3,S6=7,则由等差数列的性质可得S3、S6﹣S3、S9﹣S6仍成等差数列,即3,7﹣3,S9﹣7成等差数列,故有2(7﹣3)=3+(S9﹣7),∴S9=12.故选A.【点评】本题考查等差数列的定义和性质,利用了等差数列每相邻三项的和仍然构成等差数列,属基础题.5.曲线在点处的切线方程是(
)A.
B.C.
D.参考答案:C略6.抛物线y2=4x的焦点坐标为()A.(﹣1,0) B.(0,﹣1) C.(1,0) D.(0,1)参考答案:C【考点】K8:抛物线的简单性质.【分析】根据抛物线y2=2px的焦点坐标为F(,0),得到抛物线y2=4x的2p=4,=1,所以焦点坐标为(1,0).【解答】解:∵抛物线的方程是y2=4x,∴2p=4,得=1,∵抛物线y2=2px的焦点坐标为F(,0)∴抛物线y2=4x的焦点坐标为(1,0).故选C7.已知函数,若在区间[-4,4]上任取一个实数x0,则使成立的概率为()
A.
B.
C.
D.1参考答案:B8.在函数,,,中为偶函数的是A.
B.
C.
D.参考答案:B9.某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为(
)A.程序流程图
B.工序流程图
C.知识结构图
D.组织结构图参考答案:D10.已知函数,则
(▲)A.3
B.
C.
D.1参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.若函数f(x)=x2+ax+2b在区间(0,1),(1,2)内各有一个零点,则的取值范围是.参考答案:(3,6)【考点】简单线性规划的应用;函数零点的判定定理.【分析】由题意可得,画出可行域,如图所示,目标函数z=2+,表示2加上点(a,b)与点M(0,4)连线的斜率.数形结合求得的范围,可得z的范围.【解答】解:∵函数f(x)=x2+ax+2b在区间(0,1),(1,2)内各有一个零点,∴,即,画出可行域,如图所示:表示△ABC的内部区域,其中A(﹣3,1),B(﹣2,0),C(﹣1,0).目标函数z=2+,即2加上点(a,b)与点M(0,4)连线的斜率.数形结合可得,的最小值趋于KAM==1,的最大值趋于KBM==4,故z的最小值趋于2+1=3,最大值趋于2+4=6,故答案为(3,6).【点评】本题主要考查二次函数的性质,简单的线性规划,斜率公式,体现了转化以及数形结合的数学思想,属于中档题.12.过定点(-1,0)可作两条直线与圆x2+y2+2kx+4y+3k+8=0相切,则k的取值范围是▲.参考答案:(-9,-1)∪(4,+∞)
略13.一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是
。参考答案:16π略14.已知函数的图象与函数的图象恰有两个交点,则实数的取值范围是
.参考答案:略15.在中,若,且,则的面积为__________.参考答案:16.给定下列命题:①“若k>0,则方程x2+2x﹣k=0有实数根”的逆否命题;②“若A=B,则sinA=sinB”的逆命题;③“若2”的逆否命题;④“若xy=0,则x,y中至少有一个为零”的否命题.⑤“若”的逆命题.其中真命题的序号是
.参考答案:①③④【考点】命题的真假判断与应用.【专题】转化思想;简易逻辑.【分析】①由方程x2+2x﹣k=0有实数根,则△=4+4k≥0,解得k的范围,即可判断出真假,进而判断出其逆否命题具有相同的真假性;②原命题的逆命题为“若sinA=sinB,则A=B”,举例:取A=2π,B=π,即可判断出真假;③由,可得b<a<0,可得b2>ab,即可判断出真,进而其逆否命题具有相同的真假性;④原命题的逆命题为:“若x,y中至少有一个为零,则xy=0”是真命题,进而得到原命题的否命题具有相同的真假性.⑤原的逆命题为“若a<b<0,则>”,举例:取a=﹣2,b=﹣1,﹣2<﹣1<0,即可判断出真假.【解答】解:①由方程x2+2x﹣k=0有实数根,则△=4+4k≥0,解得k≥﹣1,因此“若k>0,则方程x2+2x﹣k=0有实数根”是真命题,其逆否命题也是真命题;②“若A=B,则sinA=sinB”的逆命题为“若sinA=sinB,则A=B”,是假命题例如:取A=2π,B=π;③由,可得b<a<0,∴b2>ab,因此“若2”是真命题,其逆否命题也是真命题;④“若xy=0,则x,y中至少有一个为零”的逆命题为:“若x,y中至少有一个为零,则xy=0”是真命题,因此原命题的否命题也是真命题.⑤“若”的逆命题为“若a<b<0,则>”是假命题,例如:取a=﹣2,b=﹣1,﹣2<﹣1<0,但是<.其中真命题的序号是①③④.故答案为:①③④.【点评】本题考查了简易逻辑的判定方法、命题之间真假性的关系、不等式的性质,考查了推理能力与计算能力,属于中档题.17.曲线在点(0,0)处的切线方程为___________.参考答案:.【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程【详解】详解:所以,所以,曲线在点处的切线方程为,即.【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在空间几何体A﹣BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是边长为2的等边三角形,F为AC的中点.AC=4(Ⅰ)求证:平面ADE⊥平面BCDE;(Ⅱ)求几何体C﹣BDF的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)取DE的中点H,连AH,CH,推导出AH⊥DE,AH⊥HC,由此能证明平面ADE⊥BCDE.(2)几何体C﹣BDF的体积,由此能求出结果.【解答】证明:(1)取DE的中点H,连AH,CH,∵△ADE为等边三角形,∴AH⊥DE,且,在△DHC中,DH=1,DC=4,HDC=60°,∴,∴AC2=AH2+HC2,即AH⊥HC,∵DE∩HC=H,∴AH⊥平面BCDE,∵AH?平面ADE,∴平面ADE⊥BCDE…==2,∵F是AC中点,∴几何体C﹣BDF的体积…19.袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率。
参考答案:20.从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(1)甲、乙两人必须入选且跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒;(4)甲不在第一棒.参考答案:(1)60;(2)480;(3)180;(4)1470【分析】(1)先选好参赛选手,再安排好甲、乙两人,再安排剩余两人,相乘得到结果;(2)先确定参赛选手,共有种选法;再安排好甲或乙,继续安排好剩余三人,相乘得到结果;(3)先选好参赛选手,再用捆绑法求得结果;(4)先安排好第一棒,再安排好其余三棒,相乘得到结果.【详解】(1)除甲、乙外还需选择人参加接力赛共有种选法则甲、乙跑中间两棒共有种排法;另外人跑另外两棒共有种排法甲、乙两人必须入选且跑中间两棒共有:种排法(2)甲、乙只有一人入选且选另外选人参加接力赛共有种选法甲或乙不跑中间两棒共有种排法;其余人跑剩余三棒共有种排法甲、乙两人只有一人被选且不能跑中间两棒共有:种排法(3)除甲、乙外还需选择人参加接力赛共有种选法甲乙跑相邻两棒,其余人跑剩余两棒共有种排法甲、乙两人都被选且必须跑相邻两棒共有:种排法(4)甲不在第一棒则需选择一人跑第一棒,共有种选法其余三棒共有种排法甲不在第一棒共有种排法【点睛】本题考查排列组合的综合应用问题,解决排列组合问题的常用方法有:特殊元素优先法、相邻问题捆绑法、相离问题插空法等.再面对复杂排列组合问题时,遵循先选后排的原则,可以更好的缕顺解题思路.21.已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心C在直线x+3y﹣15=0上.(1)求圆C的方程;(2)设点P在圆C上,求Rt△PAB的面积.参考答案:【考点】圆的标准方程.【专题】计算题;方程思想;数形结合法;直线与圆.【分析】(1)圆心C为AB的垂直平分线和直线x+3y﹣15的交点,解之可得C(﹣3,6),由距离公式可得半径,进而可得所求圆C的方程;(2)求出|AB|,由题意可得角A或角B为直角,可知Rt△PAB的斜边长为圆的直径,由勾股定理求得另一直角边长,则Rt△PAB的面积可求.【解答】解:(1)依题意所求圆的圆心C为AB的垂直平分线和直线x+3y﹣15=0的交点,∵AB的中点为(1,2),斜率为=1,∴AB的垂直平分线的方程为y﹣2=﹣(x﹣1),即y=﹣x+3,联立,解得,即圆心C(﹣3,6).∴半径r=.∴所求圆C的方程为(x+3)2+(y﹣6)2=40;(2)如图,|AB|=,PA或PB为圆的直径,等于,∴Rt△PAB的另一条直角边为,∴Rt△PAB的面积为×4×8=32.【点评】本题考查圆的标准方程的求法,考查了直线与圆的性质,训练了数形结合的解题思想方法,属中档题.22.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 给爸爸买车合同模板
- 饮食加盟合同模板
- 广东开放大学《人才测评与绩效评估(本)》形成性作业参考答案
- 2024年安全防护设备融资租赁合同担保函3篇
- 2024年度生物技术暑期实习合同:实验室研究项目与合作研究员2篇
- 2024版大酒店餐饮服务承包合同3篇
- 2024版办公耗材智能化设备定制采购合同2篇
- 2024全新电梯临时电使用及电力设施维护协议下载3篇
- 2024年度二手车寄售服务合同模板(全新推出)3篇
- 保安部下半年工作参考计划
- 体育场馆租赁合同与体育场馆运营合作协议
- 正高级会计师答辩面试资料
- 脊柱四肢及肛门直肠检查
- 音乐与人生-西南交通大学中国大学mooc课后章节答案期末考试题库2023年
- 交通运输布局对区域发展的影响-扬州的兴衰高一地理人教版(2019)必修第二册
- 2023年高考全国新课标Ⅱ卷作文“安静一下不被打扰”导写及范文
- 实验指导书-基于思科模拟器的静态NAT的配置
- 商洛市商州区金矿煤矿矿山地质环境保护与土地复垦方案
- 中国铁塔股份有限公司代维交接指南(2017年)
- 常用药物皮试配制法和药物过敏反应的急救措施
- 医学微生物学知到章节答案智慧树2023年山东第一医科大学
评论
0/150
提交评论