




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
→➌题型突破←→➍专题训练←题型一平移1.在平面直角坐标系中,将点向右平移个单位长度后得到的点的坐标为()A. B. C. D.【答案】A【解析】【分析】根据直角坐标系的坐标平移即可求解.【详解】一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A【点睛】此题主要考查坐标的平移,解题的关键是熟知直角坐标系的特点.2.如图,点的坐标为,点在轴上,把沿轴向右平移到,若四边形的面积为9,则点的坐标为_______.【答案】(4,3)【分析】过点A作AH⊥x轴于点H,得到AH=3,根据平移的性质证明四边形ABDC是平行四边形,得到AC=BD,根据平行四边形的面积是9得到,求出BD即可得到答案.【详解】过点A作AH⊥x轴于点H,∵A(1,3),∴AH=3,由平移得AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴AC=BD,∵,∴BD=3,∴AC=3,∴C(4,3)故答案为:(4,3).【点睛】此题考查平移的性质,平行四边形的判定及性质,直角坐标系中点到坐标轴的距离与点坐标的关系.3.如图,把沿边平移到的位置,图中所示的三角形的面积与四边形的面积之比为4∶5,若,则此三角形移动的距离是____________.【答案】【分析】根据题意可知△A1BD∽△ABC,又根据已知条件“图中所示的三角形的面积与四边形的面积之比为4∶5”可得与的面积比为4∶9,即得出A1B∶AB=2∶3,已知,故可求A1B,最终求出.【详解】∵根据题意“把沿边平移到的位置”,∴AC∥A1D,故判断出△A1BD∽△ABC,∵图中所示的三角形的面积与四边形的面积之比为4∶5,∴与的面积比为4∶9,∴A1B∶AB=2∶3,∵,∴A1B=,∴=AB-A1B=4-=.故答案为.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法和性质是解答本题的关键.4.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点、、均在格点上(1)将向左平移个单位得到,并写出点的坐标;(2)画出绕点顺时针旋转后得到的,并写出点的坐标;(3)在(2)的条件下,求在旋转过程中扫过的面积(结果保留).【答案】(1)见解析,;(2)图形见解析,;(3)【分析】(1)根据题意,可以画出相应的图形,并写出点的坐标;(2)根据题意,可以画出相应的图形,并写出点的坐标;(3)根据题意可以求得BC的长,从而可以求得在旋转过程中扫过的面积.【详解】(1)如图所示,;(2)如图所示,(3)【点睛】此题考查作图-平移变换,作图-旋转变换,扇形面积的计算,解题关键在于掌握作图法则.题型二对称5.在平面直角坐标系中,点与点关于y轴对称,则()A., B., C., D.,【答案】B【解析】【分析】根据点关于y轴对称,其横坐标互为相反数,纵坐标相同即可得到答案.【详解】A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选B【点睛】本题考查点坐标的轴对称,解题的关键熟练掌握点坐标的轴对称.6.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A. B. C. D.【答案】C【解析】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【名师点睛】本题考查了中心对称图形与轴对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.平行四边形 C.矩形 D.正五边形【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C、是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.故选C.点睛:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.下列图形中既是轴对称图形,也是中心对称图形的是()A. B. C. D.【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.
【答案】B【分析】根据中心对称图形和轴对称图形的定义判断即可.【详解】解:∵A中的图形旋转180°后不能与原图形重合,∴A中的图象不是中心对称图形∴A不正确;∵B中的图形旋转180°后能与原图形重合,∴B中的图形是中心对称图形,但不是轴对称图形,∴B正确;∵C中的图形旋转180°后能与原图形重合,∴C中的图形是中心对称图形,也是轴对称图形,∴C不正确;∵D中的图形旋转180°后不能与原图形重合,∴D中的图形不是中心对称图形,∴D不正确;故选:B.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键.10.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条 B.4条 C.6条 D.8条【答案】B【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.【详解】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.【点睛】本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质.11.如图,在扇形中,平分交狐于点.点为半径上一动点若,则阴影部分周长的最小值为__________.【答案】【分析】如图,先作扇形关于对称的扇形连接交于,再分别求解的长即可得到答案.【详解】解:最短,则最短,如图,作扇形关于对称的扇形连接交于,则此时点满足最短,平分而的长为:最短为故答案为:【点睛】本题考查的是利用轴对称求最短周长,同时考查了圆的基本性质,扇形弧长的计算,勾股定理的应用,掌握以上知识是解题的关键.12.在平面直角坐标系中的位置如图所示,且,在内有一点,M,N分别是边上的动点,连接,则周长的最小值是______.【答案】【分析】分别作出点P关于OA和OB的对称点和,连接,分别与OA和OB交于点M和N,此时,的长即为周长的最小值.【详解】解:分别作出点P关于OA和OB的对称点和,则(4,-3),连接,分别与OA和OB交于点M和N,此时,的长即为周长的最小值.由可得直线OA的表达式为y=2x,设(x,y),由与直线OA垂直及中点坐标在直线OA上可得方程组:解得:则(0,5),由两点距离公式可得:即周长的最小值.故答案为.【点睛】本题考查了轴对称变换中的最短路径问题,解题关键在于找出两个对称点,利用方程求出点的坐标.13.如图,在平面直角坐标系中,已知的三个顶点坐标分别是(1)将向上平移4个单位长度得到,请画出;(2)请画出与关于轴对称的;(3)请写出的坐标.【答案】(1)如图所示:,即为所求;见解析;(2)如图所示:,即为所求;见解析;(3).【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【详解】(1)如图所示:,即为所求;(2)如图所示:,即为所求;(3).【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.题型三旋转14.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°【答案】D【解析】【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选:D.【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.15.如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到.此时恰好点C在上,交AC于点E,则△ABE与△ABC的面积之比为()A. B. C. D.【答案】D【分析】由旋转的性质得出BC=BC',∠ACB=∠A'C'B=60°,则△BCC'是等边三角形,∠CBC'=60°,得出∠BEA=90°,设CE=a,则BE=a,AE=3a,求出,可求出答案.【详解】∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',∴BC=BC',∠ACB=∠A'C'B=60°,∴△BCC'是等边三角形,∴∠CBC'=60°,∴∠ABA'=60°,∴∠BEA=90°,设CE=a,则BE=a,AE=3a,∴,∴,∴△ABE与△ABC的面积之比为.故选:D.【点睛】本题考查了旋转的性质,直角三角形的性质,等边三角形的判定与性质;熟练掌握旋转的性质是解题的关键.16.如图,在平面直角坐标系中,的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把向左平移4个单位后得到对应的A1B1C1,请画出平移后的A1B1C1;(2)把绕原点O旋转180°后得到对应的A2B2C2,请画出旋转后的A2B2C2;(3)观察图形可知,A1B1C1与A2B2C2关于点(,)中心对称.【答案】(1)详见解析;(2)详见解析;(3)﹣2,0.【分析】(1)依据平移的方向和距离,即可得到平移后的△A1B1C1;(2)依据△ABC绕原点O旋转180°,即可画出旋转后的△A2B2C2;(3)依据对称点连线的中点的位置,即可得到对称中心的坐标.【详解】解:(1)如图所示,分别确定平移后的对应点,得到A1B1C1即为所求;(2)如图所示,分别确定旋转后的对应点,得到A2B2C2即为所求;(3)由图可得,A1B1C1与A2B2C2关于点成中心对称.故答案为:﹣2,0.【点睛】本题考查的是平移,旋转的作图,以及判断中心对称的对称中心的坐标,掌握以上知识是解题的关键.17.已知和都是等腰直角三角形,.(1)如图1:连,求证:;(2)若将绕点O顺时针旋转,①如图2,当点N恰好在边上时,求证:;②当点在同一条直线上时,若,请直接写出线段的长.【答案】(1)见解析;(2)①见解析;②或【分析】(1)利用SAS定理证明即可;(2)①连接,证明,即可证;②当点N在线段上时,连接,在中构造勾股定理的等量关系;当点M在线段上时,同理即可求得.【详解】(1)证明:即,,即.和是等腰直角三角形,,(2)①证明:如图1,连接.,,即.和是等腰直角三角形,,,,.是等腰直角三角形,,.②或.温馨提示:如图2,当点N在线段上时,连接,设,在中,,;如图3,当点M在线段上时,连接,设,在中,解得:.【点睛】本题主要考查全等三角形的判定与性质、等腰直角三角形的性质,三点共线分类讨论,对几何题目的综合把握是解题关键.18.(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为
.(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
【答案】(1)AD=BE,AD⊥BE.(2)AD=BE,AD⊥BE.(3)5-3≤PC≤5+3.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-3≤BE≤5+3.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中
∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中
,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-3,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+3,∴5-3≤BE≤5+3,即5-3≤PC≤5+3.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.19.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第页“探索”部分内容:如图,将一个三角形纸板绕点逆时针旋转到达的位置,那么可以得到:,,;,,(
)
刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“(
)”处应填理由:____________________;(2)如图,小王将一个半径为,圆心角为的扇形纸板绕点逆时针旋转到达扇形纸板的位置.
①请在图中作出点;②如果,则在旋转过程中,点经过的路径长为__________;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.
【答案】问题解决(1)旋转前后的图形对应线段相等,对应角相等(2)①见解析;②问题拓展:【分析】问题解决(1)根据旋转性质得出旋转前后的图形对应线段相等,对应角相等;(2)①分别作和的垂直平分线,两垂直平分线的交点即为所求点O;②根据弧长公式求解即可;问题拓展,连接,交于,连接,,,由旋转得,,在和中求出和的长,可以求出,再证明,即可求出最后结果.【详解】解:【问题解决】(1)旋转前后的图形对应线段相等,对应角相等
(2)①下图中,点O为所求
②连接,,扇形纸板绕点逆时针旋转到达扇形纸板的位置,,,,设,,,在旋转过程中,点经过的路径长为以点为圆心,圆心角为,为半径的所对应的弧长,点经过的路径长;
【问题拓展】解:连接,交于,连接,,如图所示
.由旋转得,.
在中,.在中,,,.
..,
在和中,,又,,.又,,.【点睛】本题考查了旋转的性质,弧长公式,解直角三角形,三角形全等的性质与判定,解题的关键是抓住图形旋转前后的对应边相等,对应角相等,正确作出辅助线构造出直角三角形.20.(2023·四川南充·统考中考真题)如图,正方形中,点在边上,点是的中点,连接,.
(1)求证:;(2)将绕点逆时针旋转,使点的对应点落在上,连接.当点在边上运动时(点不与,重合),判断的形状,并说明理由.(3)在(2)的条件下,已知,当时,求的长.【答案】(1)见解析(2)等腰直角三角形,理由见解析(3)【分析】(1)根据正方形的基本性质以及“斜中半定理”等推出,即可证得结论;(2)由旋转的性质得,从而利用等腰三角形的性质推出,再结合正方形对角线的性质推出,即可证得结论;(3)结合已知信息推出,从而利用相似三角形的性质以及勾股定理进行计算求解即可.【详解】(1)证:∵四边形为正方形,∴,,∵点是的中点,∴,∴,∴,即:,在与中,∴,∴;(2)解:为等腰直角三角形,理由如下:由旋转的性质得:,∴,∴,,∵,∴,即:,∴,∴,∴,∴,∴为等腰直角三角形;(3)解:如图所示,延长交于点,∵,,∴,,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∵,∴,设,则,,∴,解得:,(不合题意,舍去),∴.
【点睛】本题考查正方形的性质,旋转的性质,全等三角形和相似三角形的判定与性质等,理解并熟练运用基本图形的证明方法和性质,掌握勾股定理等相关计算方式是解题关键.21.(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当的三个内角均小于时,如图1,将绕,点C顺时针旋转得到,连接,
由,可知为①三角形,故,又,故,由②可知,当B,P,,A在同一条直线上时,取最小值,如图2,最小值为,此时的P点为该三角形的“费马点”,且有③;已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.如图3,若,则该三角形的“费马点”为④点.(2)如图4,在中,三个内角均小于,且,已知点P为的“费马点”,求的值;
(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/,a元/,元/,选取合适的P的位置,可以使总的铺设成本最低为___________元.(结果用含a的式子表示)【答案】(1)①等边;②两点之间线段最短;③;④A.(2)(3)【分析】(1)根据旋转的性质和两点之间线段最短进行推理分析即可得出结论;(2)根据(1)的方法将绕,点C顺时针旋转得到,即可得出可知当B,P,,A在同一条直线上时,取最小值,最小值为,在根据可证明,由勾股定理求即可,(3)由总的铺设成本,通过将绕,点C顺时针旋转得到,得到等腰直角,得到,即可得出当B,P,,A在同一条直线上时,取最小值,即取最小值为,然后根据已知和旋转性质求出即可.【详解】(1)解:∵,∴为等边三角形;∴,,又,故,由两点之间线段最短可知,当B,P,,A在同一条直线上时,取最小值,最小值为,此时的P点为该三角形的“费马点”,∴,,∴,,又∵,∴,∴,∴;∵,∴,,∴,,∴三个顶点中,顶点A到另外两个顶点的距离和最小.又∵已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.∴该三角形的“费马点”为点A,故答案为:①等边;②两点之间线段最短;③;④.(2)将绕,点C顺时针旋转得到,连接,由(1)可知当B,P,,A在同一条直线上时,取最小值,最小值为,
∵,∴,又∵∴,由旋转性质可知:,∴,∴最小值为,(3)∵总的铺设成本∴当最小时,总的铺设成本最低,将绕,点C顺时针旋转得到,连接,由旋转性质可知:,,,,∴,∴,当B,P,,A在同一条直线上时,取最小值,即取最小值为,
过点作,垂足为,∵,,∴,∴,∴,∴,∴的最小值为总的铺设成本(元)故答案为:【点睛】本题考查了费马点求最值问题,涉及到的知识点有旋转的性质,等边三角形的判定与性质,勾股定理,以及两点之间线段最短等知识点,读懂题意,利用旋转作出正确的辅助线是解本题的关键.22.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形的边上任意取一点G,以为边长向外作正方形,将正方形绕点B顺时针旋转.
特例感知:(1)当在上时,连接相交于点P,小红发现点P恰为的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接,并延长与相交,发现交点恰好也是中点P,如图②,根据小红发现的结论,请判断的形状,并说明理由;规律探究:(3)如图③,将正方形绕点B顺时针旋转,连接,点P是中点,连接,,,的形状是否发生改变?请说明理由.【答案】(1)见解析;(2)是等腰直角三角形,理由见解析;(3)的形状不改变,见解析【分析】(1)连接,,,根据正方形的性质求出,证明,推出,再利用余角的性质求出,推出即可;(2)根据正方形的性质直接得到,推出,得到是等腰直角三角形;(3)延长至点M,使,连接,证明,得到,推出,设交于点H,交于点N,得到,由得到,推出,进而得到,再证明,得到,,证得,再由,根据等腰三角形的三线合一的性质求出,即可证得是等腰直角三角形.【详解】(1)证明:连接,,,如图,
∵四边形,都是正方形,∴,∴,∵四边形是正方形,∴,又∵,∴,∴,∴,∵,∴,∴,∴,即点P恰为的中点;(2)是等腰直角三角形,理由如下:∵四边形,都是正方形,∴∴,∴是等腰直角三角形;(3)的形状不改变,延长至点M,使,连接,
∵四边形、四边形都是正方形,∴,,∵点P为的中点,∴,∵,∴,∴,∴,,∴,设交于点H,交于点N,∴,∵,∴,∵,∴,∵,∴,又∵,∴,∴,,∵,∴,即,∵,∴,即,∴,∴,∴,∴是等腰直角三角形.【点睛】此题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质等,(3)中作辅助线利用中点构造全等三角形是解题的难点,熟练掌握各性质和判定定理是解题的关键.23.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)【答案】(1)结论:S△ABC:S△ADE=1,为定值.理由见解析;(2)S△ABC:S△ADE=,为定值,理由见解析;(3)S△ABC:S△ADE=,为定值.理由见解析.【解析】【分析】(1)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(2)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(3)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.【详解】(1)结论:S△ABC:S△ADE=定值.理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.∵∠BAE=∠CAD=90°,∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,∴∠DAE=∠CAG,∵AB=AE=AD=AC,∴1.(2)如图2中,S△ABC:S△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务合同补充协议合同范本
- 单位房屋借用合同范本
- 劳动使用期合同范本
- 利用合同范本挣钱
- 上海徐汇金杯租车合同范本
- 监控弱电维护合同范本
- 医院电动车租售合同范本
- 备案的借住合同范本
- 单位之间借支合同范本
- 2003劳务合同范本
- 教育专家报告合集:年度得到:沈祖芸全球教育报告(2023-2024)
- 儿童尿道黏膜脱垂介绍演示培训课件
- 静压桩施工技术交底
- 2023发电企业防汛工作管理办法
- 《酒店客房管理课件》
- 服装市场调研报告
- 食品安全风险评估的课件
- 医院维修施工方案施工方案
- 第四单元细胞的物质输入和输出(单元教学设计)高一生物(人教版2019必修1)
- 《公路路基路面现场测试规程》(3450-2019)
- 对北京古建筑天坛的调查报告
评论
0/150
提交评论