版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Breakingthe
CostBarrierin
Biomanufacturing
February2024
ByJean-FrançoisBobier,TristanCerisy,Anne-DouceCoulin,CrystalBleecher,
VictoriaSassoon,andBrentanAlexander
BreakingtheCostBarrierin
Biomanufacturing
SincetheUSFDAapprovedthefirstbiosyntheticdrug,insulin,fourdecadesago,themarketforproductscreatedthroughprecisionfer-mentationandbiomanufacturinghasgrownto$100billion.Thesec-tor’ssuccessledtopredictionsthatprecision-fermentedbioproductswoulddisruptindustriesfrompharmaceuticalstofoodtochemicals.
Butinareasotherthanpharma—whosebusinessmodelsarebuiltonhigh-margin,low-volumeproductswithlowsensitivitytocosts—innovationshavecreatedonlynichemarketsin
enzymes,fragrances,andfoodandfeedsupplements.
Thismaybeabouttochange.Demandissolidifyingfor
productsthatusebiologicalprocessesandgenetically
modifiedmicroorganismsinplaceoftraditionalproductionmethods,drivenbytheneedtoachievesustainabilityin
manufacturingwhilereducingcarbonemissions.At
COP28,nearly200nationssignedontomovingawayfromfossilfuelsand,therefore,petrochemicals.Morethan4,100oftheworld’slargestcompanieshaveestablishedemis-
sions-reductiontargets,accordingtotheScienceBased
Targetsinitiative,withmorethan2,600ofthemincludingnetzeroemissionscommitments.InitsMarch2023re-
port,BoldGoalsforUSBiotechnologyandBiomanufacturing,
theWhiteHousesetatargetofproducing“atleast30%oftheUSchemicaldemandviasustainableandcost-effectivebiomanufacturingpathways”within20years.
Butforchangetohappen,costsmustcomedown.Meetingthesustainabilityandemissions-reductionneedsofglobalindustrydependsonachievingeconomicallyviablepreci-
sion-fermentationbiomanufacturingatcommercialscale
andbringingproductioncostsintoparitywithexisting
methods.Theseinturnrequireconstructionandoptimiza-tionofbiofoundries—large-scale,standardizedbiomanu-
facturingfacilitiesthatcanmeetindustrial-leveldemand—andcontinuedimprovementsinstrainengineering.
Participantsallalongthevaluechainhaveimportantrolestoplay.Mostimmediately,corporatecustomers—thesamecompaniesthatneedtomeetsustainabilityandnetzero
pledges—mustdemonstratethatthedemandisrealby
committingtoofftakeagreementsforfuturedeliveryof
newingredientsandbyadaptingtheirsupplychainsandproductformulationsaccordingly.Policymakersandregu-latorscansmooththewaybyofferingincentivesandloanguaranteesandremovingredtape.Asdemandfornew
facilitiesgainstractionandfinancialrisksrecede,projectfinanceinvestorscanstepinwithnecessarycapital.
Aswehaveseenwithotheradvancedtechnologies,the
resultcanbeavirtuouscircle.Thefirstoptimizedlarge-
scalefacilitiescanlowerproductioncostsbyasmuchas
50%onexistingstrains,enablingsomecostparitywith
incumbenttechnologies.Moreandlargerfacilities,aswellasimprovedstrains,couldreduceproductioncostsbyupto90%,achievingorsurpassingpriceparitywithcurrent
incumbentmethodsformostproducts.
(SeeExhibit1.)
Infact,weestimatethatthemarketforbiomanufactured
ingredientsinthreeindustries—specialtychemicals,food,andchemicalprecursors—couldreach$200billionby
2040—ifthemanufacturingcapacityisthere.
BCGhasbeenresearchingandadvisingclientsforyearsondevelopmentsinadvancedtechnologies.Synonymisdevel-opingthephysical,digital,andfinancialinfrastructureto
catalyzeabiomanufacturingrevolution.Here’sourviewonhowbiomanufacturingcanfinallyfulfillitspromiseof
achievingcommercialscale.
1BREAKINGTHECOSTBARRIERINBIOMANUFACTURING
Exhibit1-TheThreeKeystoAchievingBiomanufacturing’sPotential
Nichemarkets
(hundredsoftons)
Massmarket
(millionoftons)
Pharmascale
(<100,000liters)
Megascale
(2millionliters)
Scale
Strains
Demand
Many,
designedfor
lab
Few,
designedfor
scale
Source:BCGanalysis.
BoostingBiomanufacturingSupplybyDrivingDownCosts
Twotruths:therangeandperformanceofprecisionfer-
mentedproductsarerelevantforalmostallmanufacturingcompanies,andbiomanufacturingisatriedandtested
technology.Thebigproblem—andthereasonthatpreci-
sionfermentationremainsanunderusedtechnologyde-
spitecontinuingadvancesingenomeengineeringand
straindevelopment—isthehighcostofproduction,whichstemsfromadherencetorigorousstandardstoensurehighquality.
(SeeExhibit2.)
Biomanufacturinginvolvesfermentationunderoptimal
conditions(pressure,temperature,pH,andconcentrationofoxygenandnutrients)inafermentorpurpose-builtfor
aerobicfermentationfollowedbydownstreamprocessing(DSP)toisolatetheendproductviaseparationandpurifi-cationstepssuchasfiltrationandspraydrying.Advances
todatehavebeendrivenprimarilybypharmaceutical
standards.Contractmanufacturingorganizations(CMOs),whichservethepharmaceuticalsindustry,havesmall
scale,highproductioncosts,andunprofitableuniteconom-icsformostnonpharmabioproductcompanies.Inaddi-
tion,customersmustinvestasignificantamountofup-
frontcapitaltofundDSP,makingtheeconomicseven
moreunfavorable.OnlyahandfulofCMOshaveavailablecapacityofmorethan100,000liters.
BOSTONCONSULTINGGROUP+SYNONYM2
Exhibit2-UnlikeStrainEngineering,BiomanufacturingHasImprovedOnlyIncrementallyinthePastCentury
Externaldrivers
.
1920
•Nopetrochemicalalternative
•Geopolitical(wartimebiomanufacturing)
.
1980
•Nopetrochemicalalternative
•Recombinantproteinsensuremorereliabilitythananimal
2010Present
•Ecologicalsustainability
•Localproductionandacceleratedsupplychain
Natural
RecombinantDNA
Digitalengineering
•Naturalstraindiscoveryand
•RecombinantDNA(manual
•GenomeengineeringandAI
Strain
engineering
selection
•Fermentationwithlimited
purification
process)
•LimitedDNAsequencing
•DNAsynthesisatscale
•DNAsequencingatscale
Biomanufacturing
Opportunity
Largescale
Smallandmediumscale
Manufacturingadvancesdrivenmainlybypharmaceuticalstandards:
•Smallscale1
•Optimizedforyieldandquality,notcosts
Endproducts
•Antibiotics(penicillin,etc.),vaccine
•Aminoacids,citricacid
•Acetone,butanol,ethanol
•Enzymes(laundryfood,etc.)
•Pharmaceuticalbiologics
(insulin,epoetin,antibodies)
•Proteins(textile,food,etc.)
•Enzymes(greenchemistry,food,etc.)
•Molecules(fragrance,dyes,etc.)
Source:BCGanalysis.
1Excludingaminoacids,someorganicacids,andalcohols(ABEfermentation),whichhavebeenproducedinlargescalefermentors.
Enterbiofoundries—facilitiesthataredesigned,built,
standardized,andoptimizedforefficientproductionof
nonpharmabioproducts.Eachsuchfacilitycanprovideatleast2millionlitersofcapacity,achievingcommercial
economicsandbridgingthecostgapforlargeproductioncategoriessuchasfoodsandbiomaterialsbyreducingunitcostsbyabout50%.
(SeeExhibit3.)
Someinnovationsthatmakebiofoundriespossible(such
astheuseofAIandhigh-precisionsensors)requiread-
vancesintechnology,butmanyotherimprovementsin-
volveonlycostoptimizationrelatedtoprocessengineering.Theseleversfocusonsuchhigh-costitemsasenergy
demandandlaborandmaintenance.Forexample,three
piecesofequipment—agitators,chillers,andaircompres-sors—accountforapproximately70%ofanentirefacility’selectricaldemand.Forsomestrains,companiescanreducetheserequirementsbyoptimizingmasstransferdesigntolowerthecombinedagitationandaircompressorelectricalloadsandbyimprovingthecoolingsystemdesigntolessenthechillersystemelectricalloads.Modulardesignreducesconstructiontimelinesandcostsandaugmentsutilizationratesbyaccommodatingvaryingcustomerneeds.
Companiescanimprovecostsinatleasttenspecificareasincategoriesrangingfromvariablecoststofactoryutiliza-tion.
(SeeExhibit4.)
Standardizationandoptimizationprovidebiofoundries
withsignificantadvantagesoverexistinglarge-scalebio-
manufacturingfacilities,particularlywithrespecttocost,timeline,andadaptability.Thebespokenatureoftradition-alfacilitiesresultsinelevatedcostsandprolongedtime-
lines.Thesefacilitiesdemandsubstantialupfrontcapitalinvestments,rangingfrom$300millionto$400million
each,andthetimerequiredfordesignandconstructionistypicallythreetofiveyears.
Incontrast,standardizedbiofoundrieshavethepotential
toreducecostsandconstructiontimes.Initialfacilitiesareexpensivebuttheyoffermultipurposefunctionalityand
adaptability.Standardizationcanreducethecapitalinvest-mentforlaterbiofoundriesbyupto30%.Thisapproach
notonlymitigatesrisksbutalsohelpsmakebiofoundriesaversatilesolutionthatcanmeetevolvingneedsandad-
vancesinfuturestrains.
3BREAKINGTHECOSTBARRIERINBIOMANUFACTURING
Exhibit3-OptimizedBiofoundrieswithaMinimumWorkingCapacityof2MillionLitersCanCutCostsbyAbout50%
Costofgoodssold($/kgproduced)
5.0x
2.5x
0.0x
Today'stypical
commercialcapacity
Optimalscale
(biofoundry)
012345
Totalfacilitycapacity(millionliters)1
Fermentorvolume150kL100kL150kL200kL300kL400kL
Sources:BCGanalysis;Synonymanalysis.
1Workingvolume.
Exhibit4-FacilityOptimizationCanDrasticallyReduceBiomanufacturingCosts
Fixedcosts($/year)
Facility
throughput
(kg/year)
Factory
utilization(%)1
+5–15
percentagepoints
Biomanufacturingcosts($/kg)
Costimprovementpotential
Variable
costs($/kg)
–20%
–20%
+20%
•Masstransferandcoolingsystem
optimization
•Wastebiomassvalorization
•Waterrecycling
•Highlyautomatedsystems
•Modular
standardizeddesign
•SensorsandAIforpredictive
maintenance
•Increased
downstream
processingproductrecovery
•Minimized
fermentor
turnaroundtime
•Standardizationtoallowmultiuse
•Equipment
redundancyand
flowparallelization
Sources:BCGanalysis;Synonymanalysis.
1Typicalutilizationtodayis80%–90%.
BOSTONCONSULTINGGROUP+SYNONYM4
APotential$200BillionMarket
Therearestrongfinancialreasonstopressforward.We
estimatethatscalingupindustrialprecisionfermentationcancreatea$200billionmarketby2040,seventimesthecurrentsize,ifcompaniesbuildenoughproductioncapaci-tytolowercosts.
(SeeExhibit5.)
Indeed,theprimarycon-straintonultimatemarketsizeisbiomanufacturingcapac-ity.Therearepracticallimitstohowmuchandhowfast
suchcapacitycanbebuilt.
Marketsizingestimatesbyothershaverunintothetril-
lionsofdollars.We,however,focusexclusivelyonthemar-ketforthebioproductsproducedbythenewbiofoundries,whicharemostoftenusedasingredientinputs,andnot
themarketforformulatedfinishedproducts,which(as
noted)includemostoftheproductsmadetoday.Threeofthebiggestnear-termopportunitiesinvolvespecialtychem-icals,food,andchemicalprecursors.
(SeeExhibit6.)
Stan-dardizedbiofoundriescanserveallofthesemarkets,withconstructionfocusingonhigher-margin,lower-volume
moleculesfirst.
SpecialtyChemicals.Moleculesincludeenzymes,noned-ibleproteins(suchascollagenandsilks)fromanimal
sources,pigments,fragrances,andchemicalactivephar-
maceuticalingredientssuchascertainantibioticsand
statins.Inthissegment,biomanufacturingcurrentlycom-mandsanaveragecostpremiumof30%to50%,dependingonthemoleculesinvolved.Thesegmentalsoencompassescosmeticsandactiveingredientsthatareregulatedand
thereforerequirelargeandlengthyR&Dinvestments(fivetotenyearsforcosmetics,forexample).Weestimatethesegment’s2040marketpotentialat$50billion.
Food.Thepotentialbioproductmarketforfoodsincludesdairy,meatandeggproteins,fats,additives,andfooddyesandflavors.Companiesalreadyproduceseveralmolecules(includingsomevitamins,aminoacids,andflavors)at
scale,provingthedemandforsuchproducts.Current
biomanufacturingcostsforsomeproductsaretwotothreetimesashighasforthesameproductsmanufacturedby
incumbentmethods,butbiofoundriescouldlowerthose
coststoparityorbelow.Animalagricultureisresponsiblefor15%ofgreenhousegasemissionsandsignificantwaterandlandusage.Itprovokesethicalconcernsrelatedto
animalcruelty.Biomanufacturingoffersacompetitive,sustainable,cruelty-freealternative.
(See“PrecisionFer-
mentedFoods:TheNextWave?”)
Exhibit5-ReducingCostsCanUnlock$200BillioninDemand
SoScalingopportunity
Description
•
Pharma
biologics
Biopharmabiologics(e.g.,mRNAvaccines,insulin,
hormones,CAR-Tcells,
genetherapy,orantibodies)
•
•
•
•
Specialty
chemicals
Enzymes
Animal-basedand
plant-basedproteins
andlipids1
PigmentsandfragrancesChemicalAPIs
•
•
•
•
Food
Dairy,meat,and
eggproteins
Fats
Additives
Dyesandflavors
Chemicals
precursors
•Monomersandresins
•Fertilizersandpesticides
•Lubricants
•Fibers
2040marketpotential
$50billion
$100billion
$50billion
Margin
Volume
Source:BCGanalysis.
Note:API=activepharmaceuticalingredients.
1Forexample,collagen,silk,andpalmoil.
5BREAKINGTHECOSTBARRIERINBIOMANUFACTURING
Exhibit6-PotentialBiomanufacturingDevelopmentToward2040
Price($/kg)
10,000.00
100.00
1.00
0.01
Pharmabiologics
Specialtychemicals
.
Food
Chemicalprecursors
1
Volume(kilotons/year)
100
10,000
Evolutionofbioalternativesby2040CurrentproductionpriceCurrentnon-bioalternative
Source:BCGanalysis.
Thetaskofbuildingdemandstillfacesplentyofchalleng-es,includingtheneedforwidespreadcustomereducationandfornewrulesandregulations(includingforfoodlabel-ingandmanufacturingfacilitiesinspections).Regulatory
authoritiessuchastheFDAintheUSandtheEuropean
FoodSafetyAuthoritymustalsodevelopvalidationand
inspectionrulesandprocedurestofacilitatethedevelop-
mentofnew,sustainable,andsafeproductswithoutin-
creasingtime-to-market.Byachievingbothpriceparityanddecreasedemissions,theoverallfermentationfoodmarketshouldgrowto$100billionby2040.
ChemicalPrecursors.Today,chemicalprecursorsconsistofpetrochemicalcompoundssuchasethylene(whichafterpolymerizationbecomesPETplastic).Theyarea$600
billionmarketthatisgrowingat3%ayearalongwithfossilfuelproduction.Theproductsarecheaptomake,since
theyusecompoundsfoundasbyproductsofthefuelrefin-ingprocess.Theyarefoundinanarrayofendproducts,
includingpolymers(suchasplastic),resins,fertilizers,
pesticides,lubricants,clothfibers(suchaspolyester),andevendrugs(aspirin,forexample)andfoodadditives(thinktruffleflavor).Inthepast70years,theyhavedisplaced
preexistingmethodsandproductsthatsometimesusedfermentation(suchasammunitionproducedduringthetwoworldwars).
Becausechemicalprecursorsaresoinexpensivetopro-
duce,earlybiofoundriesmaystruggletocompete.None-
theless,weexpectamarketof$50billiontodevelopovertime.Specificproductsforwhichcostparityorincreased
performanceisachievablewillemerge.Wealsoexpect
furtherregulationorevenrestrictionofpetrochemicaluse,increasingcustomerinterestinbioalternativessuchas
bioplastics.Ultimately,astherecentCOP28agreement
suggests,petrochemicalusewilldeclinealongwithoil
production,whichwillopenfurtheropportunitiesforalter-natives.
CarbonBenefits.Inadditiontoreducinggreenhousegasemissions,byusingbiogenicratherthanfossil-derived
inputs,biofoundriesimproveyieldandenergyefficiencies,makingbiomanufacturingatscaleamoreappealingalter-nativeforproducingmostmolecules,fromthestandpointofCO2emissions.
(SeeExhibit7.)
BOSTONCONSULTINGGROUP+SYNONYM6
PrecisionFermentedFoods:TheNextWave?
Companiesarealreadyusingprecisionfermentationatscaletoproducesomeadditives.Productsincludeflavorenhancers(glutamicacid),acidifiers(citricacid,fumaricacid,andmalicacid),low-caloriesweeteners(aspartic
acid),andthickeningagents(xanthangum).Decreasingcostscouldenablecompaniestotargetnewmarkets.
Severaldyesandflavormoleculesarecurrentlybeing
supplantedbybioproducedequivalents.Theseincludeflavorssuchvanillin,santalol,menthol,Nootkatone,lac-tones,alpha-ionene,andvalencene,anddyessuchas
carminicacid(usedinproductsrangingfromcandytoyogurttosausage),anthocyanin,andcarotenoids.
Weexpectprecisionfermentationtounlockthenextwaveofgrowthin
alternativefoods
.Asthegrowthofplant-basedfoodsplateaus,precisionfermentationisonthecuspof
offeringnewalternativesformeat,eggs,dairy,additives,dyes,andflavors.
Forexample,multiplecompaniesarenowfermenting
varioustypesofproteinstoformulatesuchdairyendprod-uctsasmilk(includinginfantmilk),cheese,butter,and
cream.
Fermentationisalsowellsuitedtotheproductionofani-malproteinreplacements,suchaseggproteinformakingcakes,andheme(aprecursortohemoglobin)togivemoremeatlikeflavortoplant-basedalternatives.
Thankstothelatestdevelopmentsinstrainengineering,
thecostofdevelopingastrainforaspecificmoleculehasfallendrastically.Thisopensthewayforprecisionfermen-tationtoproducemoremoleculesthanbefore,without
beingrestrictedtoaddressingonlyverylargemarkets.In
thefuture,weexpectprecisionfermentationtoentermanymidsizeandsmallermarkets.
7BREAKINGTHECOSTBARRIERINBIOMANUFACTURING
Exhibit7-BiofoundriesReduceGreenhouseGasEmissionsintheProductionofMostMolecules
Nonexhaustive
ImprovementofkgCO2equivalentemissionperkgofproductbetweenconventionalandcurrentbio-basedproductionmethodsforselectedmolecules,withafurtherpotentialfor65%improvementafterfuturescale-up
–92%
4,500
–90%
17.4
–73%
1,000
4.9
–76%
1.3
4.9
3.7
1.9
1.7
1.3
355
0.5
Vanillin
DairyOilsSuccinicacid
ConventionalCurrentbio-basedFuturescale-up
Sources:DOIFoundation;BCGanalysis.
InvestingintheInfrastructureoftheFuture
Breakingthroughthecostconundrumthathasbedeviledbiomanufacturingwilldependoninvestmentcoalescing
behindstandardizeddesignsforbiofoundries.Leadtimesarelong,socorporatecustomersandgovernmentsarekeyplayersintheseearlystagesofkickinginvestmentand
constructionintogear.
Ourestimatesshowthatservinga$200billionmarket
requiresa20-foldexpansionofcurrentproductioncapacity.
(SeeExhibit8.)
By2040,theworldwillneed6,000new
fermentorsspreadacross1,000biofoundriesthathave2.4billionlitersoftotalcapacity.
(See“FermentationEconom-
ics.”)
Supplyingtheprimaryfeedstock,sugar,wouldtake65,000squarekilometers(40,000squaremiles)orroughlyequivalenttothelandmassofBavariaorWestVirginia.
Althoughthisisamassivechallenge,itisnotoutofreach.Bioethanol,whichrepresents10%to15%ofUSgasoline
consumption,hasalmostreachedpriceparitywithfossil
fuelsinasingledecade(thanksinpartgovernmentsman-dates)andhasbuilttheinfrastructuretosustaina$100
billionmarket.Althoughbioethanolfacilitiesaresimpler
andcheapertoconstruct,theyarecloseenoughtopreci-sionfermentationfacilitiestodemonstratefeasibility.
(See
“TheCornEthanolGrowthWave.”)
Theeventualphase-outofgasolinecarsalsowillfreeupalargequantityofcorn
andsugarforprecisionfermentation.
Theshifttolarge-scale,standardizedbiomanufacturing
sitesrepresentsanenormousopportunityforinfrastruc-
tureinvestment.
(SeeExhibit9.)
Somepilotfacilitiesandafewcommercial-scalefacilitiesnowexist,butstandardizingtheassetclassinlinewithofftakedemandwillunlock
capitalfromlater-stageinvestors.Thereisalreadyaninfra-structureconstructionopportunitystemmingfromhigherdemandthansupply.
(See“AnEmergingInfrastructure
AssetClass.”)
BOSTONCONSULTINGGROUP+SYNONYM8
FermentationEconomics
Boththestandardizationofbiomanufacturingfacilitiesandthedevelopmentofnewstrainsthatmakefurtherinnova-tionpossiblewillreducethecostsofproductionforthe
bioeconomy.Asthecostofproductionforanindividualproductfalls,demandforitwillincrease.
Realizingeconomiesofscaleisamatternotjustofthe
facility’stotalcapacitybutalsoofthesizeofitsfermentors.Forexample,a2.4-million-literfacilitythatoperatessix
400,000-literfermentorshaslowercapexandopexthanafacilitythatrunssixteen150,000-literfermentors.Further-morethefacilitywiththesixteen150,000-literfermentorswillhavelowercapexandopexperliterofcapacitythana600,000-literfacilitywithonlyfour150,000-literfermentors.
Thereareothervariablestoconsideraswell.Inbiofound-
ries,costsfallastanksizeincreases—uptoapointof
diminishingreturns.Facilitiesincurbaselineproduction
costsnomatterhowlargethefermentationtankis:base-
linequantitiesofenergyandmaterialsareneededtosteril-izethetank,formulateandsterilizethemedium,and
maintaincoolingwater.Therearetradeoffswithlarger
fermentorsizes.Tankslargerthan150,000litersrequire
fabricationinthefieldratherthanintheshop,which
meanslessqualitycontrol.Largerfermentorshaveahigh-ervolume-to-surface-arearatio,makingheatandmass
transferdesignmorechallenging.Andwithlargerfermen-tors,eachbatchisveryexpensive.Today,asingle
400,000-literfermentationbatchrequiresabout$100,000inrawmaterialsalone—soasinglefailureiscostly.Startupcostsarehigh,too,ascompaniesmustspendseveral
milliondollarsbeforeafacilitycangeneraterevenue.
Companiesmusttakeallofthesefactorsandothers—in-cludingtherobustnessofthemicrobestrain,theproduct
demand(forthecurrenttenantaswellasforpotential
futurefacilityusers),productpricing(margin),andavail-
ablefinancing—intoaccountwhenselectingthesizeofthefacilityandofthefermentors.Forthisreason,wearelikelytoseeamixofsizeandmakeup,whichwillincreasethe
importanceofstandardizingplantdesignandfeaturestolimitconstructionandoperatingcosts.
9BREAKINGTHECOSTBARRIERINBIOMANUFACTURING
•>$300million–$400million
•>60months
Biofoundry
>2millionliters
24(8%)
•Commercialproduction
•Continuousimprovement
Industrialscale
>100,000liters
•Scalabilitydemonstration
•Processandyieldrefinement
Pilot/demoscale
20,000–100,000liters
Subscale(92%)
255(84%)
Proofofconcept
Fundamentalresearch
Labscale
<20,000liters
•
•
Exhibit8-A$200BillionMarketRequiresa20-foldExpansionofCurrentCapacity
7xmarket($)
20xcapacity(liters)
$30billion
200millionliters
Currentfootprint
$50billion
500millionliters
Specialtychemicals
$50billion
1.5billionliters
Chemicalprecursors
$100billion
1.5billionliters
Food
Sources:Synonymanalysis;BCGanalysis.
Exhibit9-BiomanufacturingFacilitiesCanBeaNewAssetClass
Numberof
bioreactorsglobally
Facility
Usage
Capexandbuildtime
•Large-scaleproduction
•Non-pharmarequirements
24(8%)
•>$200million
•30–60months(bespokefacilitybuiltin-house)
•$5million–$50million(equipmentupgrades)
•3–12months(dependingonCMOavailabilityand
equipmentrequirements)
•$1million–$5million
•<6months(dependingonresearchlaboratoriesand
Total
universityavailability)
Sources:StateofGlobalFermentationCapacity2023;BCGanalysis(includingcaptivefacilitiesoflargechemicalplayers).
Note:CMO=contractmanufacturingorganization.
BOSTONCONSULTINGGROUP+SYNONYM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年医疗场所装修安全卫生合同
- 2024年变电站安装工程合同
- 老年人健康管理案例研讨方案
- 女生安全自我保护
- 造纸厂员工培训课件
- 市政工程开荒保洁实施方案
- 济宁学院《电路理论》2021-2022学年期末试卷
- 济宁学院《Python程序设计》2021-2022学年期末试卷
- 济南大学《专题片与纪录片创作》2021-2022学年第一学期期末试卷
- 桥梁建设管沟开挖支护方案
- 沪教牛津版八上英语Unit-6-单元完整课件
- 电力电子技术在新能源领域的应用
- 结婚审批报告表
- 2022江苏交通控股有限公司校园招聘试题及答案解析
- 装配式建筑预制构件吊装专项施工方案
- 绘本分享《狐狸打猎人》
- 防诈骗小学生演讲稿
- 小学英语-Unit4 There is an old building in my school教学设计学情分析教材分析课后反思
- 《汽车电气设备检测与维修》 课件 任务14、15 转向灯故障诊断与维修(一、二)
- 离职申请表(完整版)
- 项目5 S7-1200 PLC控制步进电机与伺服电机
评论
0/150
提交评论