BCG-打破生物制造的成本壁垒 Breaking the Cost Barrier in Biomanufacturing 2024_第1页
BCG-打破生物制造的成本壁垒 Breaking the Cost Barrier in Biomanufacturing 2024_第2页
BCG-打破生物制造的成本壁垒 Breaking the Cost Barrier in Biomanufacturing 2024_第3页
BCG-打破生物制造的成本壁垒 Breaking the Cost Barrier in Biomanufacturing 2024_第4页
BCG-打破生物制造的成本壁垒 Breaking the Cost Barrier in Biomanufacturing 2024_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Breakingthe

CostBarrierin

Biomanufacturing

February2024

ByJean-FrançoisBobier,TristanCerisy,Anne-DouceCoulin,CrystalBleecher,

VictoriaSassoon,andBrentanAlexander

BreakingtheCostBarrierin

Biomanufacturing

SincetheUSFDAapprovedthefirstbiosyntheticdrug,insulin,fourdecadesago,themarketforproductscreatedthroughprecisionfer-mentationandbiomanufacturinghasgrownto$100billion.Thesec-tor’ssuccessledtopredictionsthatprecision-fermentedbioproductswoulddisruptindustriesfrompharmaceuticalstofoodtochemicals.

Butinareasotherthanpharma—whosebusinessmodelsarebuiltonhigh-margin,low-volumeproductswithlowsensitivitytocosts—innovationshavecreatedonlynichemarketsin

enzymes,fragrances,andfoodandfeedsupplements.

Thismaybeabouttochange.Demandissolidifyingfor

productsthatusebiologicalprocessesandgenetically

modifiedmicroorganismsinplaceoftraditionalproductionmethods,drivenbytheneedtoachievesustainabilityin

manufacturingwhilereducingcarbonemissions.At

COP28,nearly200nationssignedontomovingawayfromfossilfuelsand,therefore,petrochemicals.Morethan4,100oftheworld’slargestcompanieshaveestablishedemis-

sions-reductiontargets,accordingtotheScienceBased

Targetsinitiative,withmorethan2,600ofthemincludingnetzeroemissionscommitments.InitsMarch2023re-

port,BoldGoalsforUSBiotechnologyandBiomanufacturing,

theWhiteHousesetatargetofproducing“atleast30%oftheUSchemicaldemandviasustainableandcost-effectivebiomanufacturingpathways”within20years.

Butforchangetohappen,costsmustcomedown.Meetingthesustainabilityandemissions-reductionneedsofglobalindustrydependsonachievingeconomicallyviablepreci-

sion-fermentationbiomanufacturingatcommercialscale

andbringingproductioncostsintoparitywithexisting

methods.Theseinturnrequireconstructionandoptimiza-tionofbiofoundries—large-scale,standardizedbiomanu-

facturingfacilitiesthatcanmeetindustrial-leveldemand—andcontinuedimprovementsinstrainengineering.

Participantsallalongthevaluechainhaveimportantrolestoplay.Mostimmediately,corporatecustomers—thesamecompaniesthatneedtomeetsustainabilityandnetzero

pledges—mustdemonstratethatthedemandisrealby

committingtoofftakeagreementsforfuturedeliveryof

newingredientsandbyadaptingtheirsupplychainsandproductformulationsaccordingly.Policymakersandregu-latorscansmooththewaybyofferingincentivesandloanguaranteesandremovingredtape.Asdemandfornew

facilitiesgainstractionandfinancialrisksrecede,projectfinanceinvestorscanstepinwithnecessarycapital.

Aswehaveseenwithotheradvancedtechnologies,the

resultcanbeavirtuouscircle.Thefirstoptimizedlarge-

scalefacilitiescanlowerproductioncostsbyasmuchas

50%onexistingstrains,enablingsomecostparitywith

incumbenttechnologies.Moreandlargerfacilities,aswellasimprovedstrains,couldreduceproductioncostsbyupto90%,achievingorsurpassingpriceparitywithcurrent

incumbentmethodsformostproducts.

(SeeExhibit1.)

Infact,weestimatethatthemarketforbiomanufactured

ingredientsinthreeindustries—specialtychemicals,food,andchemicalprecursors—couldreach$200billionby

2040—ifthemanufacturingcapacityisthere.

BCGhasbeenresearchingandadvisingclientsforyearsondevelopmentsinadvancedtechnologies.Synonymisdevel-opingthephysical,digital,andfinancialinfrastructureto

catalyzeabiomanufacturingrevolution.Here’sourviewonhowbiomanufacturingcanfinallyfulfillitspromiseof

achievingcommercialscale.

1BREAKINGTHECOSTBARRIERINBIOMANUFACTURING

Exhibit1-TheThreeKeystoAchievingBiomanufacturing’sPotential

Nichemarkets

(hundredsoftons)

Massmarket

(millionoftons)

Pharmascale

(<100,000liters)

Megascale

(2millionliters)

Scale

Strains

Demand

Many,

designedfor

lab

Few,

designedfor

scale

Source:BCGanalysis.

BoostingBiomanufacturingSupplybyDrivingDownCosts

Twotruths:therangeandperformanceofprecisionfer-

mentedproductsarerelevantforalmostallmanufacturingcompanies,andbiomanufacturingisatriedandtested

technology.Thebigproblem—andthereasonthatpreci-

sionfermentationremainsanunderusedtechnologyde-

spitecontinuingadvancesingenomeengineeringand

straindevelopment—isthehighcostofproduction,whichstemsfromadherencetorigorousstandardstoensurehighquality.

(SeeExhibit2.)

Biomanufacturinginvolvesfermentationunderoptimal

conditions(pressure,temperature,pH,andconcentrationofoxygenandnutrients)inafermentorpurpose-builtfor

aerobicfermentationfollowedbydownstreamprocessing(DSP)toisolatetheendproductviaseparationandpurifi-cationstepssuchasfiltrationandspraydrying.Advances

todatehavebeendrivenprimarilybypharmaceutical

standards.Contractmanufacturingorganizations(CMOs),whichservethepharmaceuticalsindustry,havesmall

scale,highproductioncosts,andunprofitableuniteconom-icsformostnonpharmabioproductcompanies.Inaddi-

tion,customersmustinvestasignificantamountofup-

frontcapitaltofundDSP,makingtheeconomicseven

moreunfavorable.OnlyahandfulofCMOshaveavailablecapacityofmorethan100,000liters.

BOSTONCONSULTINGGROUP+SYNONYM2

Exhibit2-UnlikeStrainEngineering,BiomanufacturingHasImprovedOnlyIncrementallyinthePastCentury

Externaldrivers

.

1920

•Nopetrochemicalalternative

•Geopolitical(wartimebiomanufacturing)

.

1980

•Nopetrochemicalalternative

•Recombinantproteinsensuremorereliabilitythananimal

2010Present

•Ecologicalsustainability

•Localproductionandacceleratedsupplychain

Natural

RecombinantDNA

Digitalengineering

•Naturalstraindiscoveryand

•RecombinantDNA(manual

•GenomeengineeringandAI

Strain

engineering

selection

•Fermentationwithlimited

purification

process)

•LimitedDNAsequencing

•DNAsynthesisatscale

•DNAsequencingatscale

Biomanufacturing

Opportunity

Largescale

Smallandmediumscale

Manufacturingadvancesdrivenmainlybypharmaceuticalstandards:

•Smallscale1

•Optimizedforyieldandquality,notcosts

Endproducts

•Antibiotics(penicillin,etc.),vaccine

•Aminoacids,citricacid

•Acetone,butanol,ethanol

•Enzymes(laundryfood,etc.)

•Pharmaceuticalbiologics

(insulin,epoetin,antibodies)

•Proteins(textile,food,etc.)

•Enzymes(greenchemistry,food,etc.)

•Molecules(fragrance,dyes,etc.)

Source:BCGanalysis.

1Excludingaminoacids,someorganicacids,andalcohols(ABEfermentation),whichhavebeenproducedinlargescalefermentors.

Enterbiofoundries—facilitiesthataredesigned,built,

standardized,andoptimizedforefficientproductionof

nonpharmabioproducts.Eachsuchfacilitycanprovideatleast2millionlitersofcapacity,achievingcommercial

economicsandbridgingthecostgapforlargeproductioncategoriessuchasfoodsandbiomaterialsbyreducingunitcostsbyabout50%.

(SeeExhibit3.)

Someinnovationsthatmakebiofoundriespossible(such

astheuseofAIandhigh-precisionsensors)requiread-

vancesintechnology,butmanyotherimprovementsin-

volveonlycostoptimizationrelatedtoprocessengineering.Theseleversfocusonsuchhigh-costitemsasenergy

demandandlaborandmaintenance.Forexample,three

piecesofequipment—agitators,chillers,andaircompres-sors—accountforapproximately70%ofanentirefacility’selectricaldemand.Forsomestrains,companiescanreducetheserequirementsbyoptimizingmasstransferdesigntolowerthecombinedagitationandaircompressorelectricalloadsandbyimprovingthecoolingsystemdesigntolessenthechillersystemelectricalloads.Modulardesignreducesconstructiontimelinesandcostsandaugmentsutilizationratesbyaccommodatingvaryingcustomerneeds.

Companiescanimprovecostsinatleasttenspecificareasincategoriesrangingfromvariablecoststofactoryutiliza-tion.

(SeeExhibit4.)

Standardizationandoptimizationprovidebiofoundries

withsignificantadvantagesoverexistinglarge-scalebio-

manufacturingfacilities,particularlywithrespecttocost,timeline,andadaptability.Thebespokenatureoftradition-alfacilitiesresultsinelevatedcostsandprolongedtime-

lines.Thesefacilitiesdemandsubstantialupfrontcapitalinvestments,rangingfrom$300millionto$400million

each,andthetimerequiredfordesignandconstructionistypicallythreetofiveyears.

Incontrast,standardizedbiofoundrieshavethepotential

toreducecostsandconstructiontimes.Initialfacilitiesareexpensivebuttheyoffermultipurposefunctionalityand

adaptability.Standardizationcanreducethecapitalinvest-mentforlaterbiofoundriesbyupto30%.Thisapproach

notonlymitigatesrisksbutalsohelpsmakebiofoundriesaversatilesolutionthatcanmeetevolvingneedsandad-

vancesinfuturestrains.

3BREAKINGTHECOSTBARRIERINBIOMANUFACTURING

Exhibit3-OptimizedBiofoundrieswithaMinimumWorkingCapacityof2MillionLitersCanCutCostsbyAbout50%

Costofgoodssold($/kgproduced)

5.0x

2.5x

0.0x

Today'stypical

commercialcapacity

Optimalscale

(biofoundry)

012345

Totalfacilitycapacity(millionliters)1

Fermentorvolume150kL100kL150kL200kL300kL400kL

Sources:BCGanalysis;Synonymanalysis.

1Workingvolume.

Exhibit4-FacilityOptimizationCanDrasticallyReduceBiomanufacturingCosts

Fixedcosts($/year)

Facility

throughput

(kg/year)

Factory

utilization(%)1

+5–15

percentagepoints

Biomanufacturingcosts($/kg)

Costimprovementpotential

Variable

costs($/kg)

–20%

–20%

+20%

•Masstransferandcoolingsystem

optimization

•Wastebiomassvalorization

•Waterrecycling

•Highlyautomatedsystems

•Modular

standardizeddesign

•SensorsandAIforpredictive

maintenance

•Increased

downstream

processingproductrecovery

•Minimized

fermentor

turnaroundtime

•Standardizationtoallowmultiuse

•Equipment

redundancyand

flowparallelization

Sources:BCGanalysis;Synonymanalysis.

1Typicalutilizationtodayis80%–90%.

BOSTONCONSULTINGGROUP+SYNONYM4

APotential$200BillionMarket

Therearestrongfinancialreasonstopressforward.We

estimatethatscalingupindustrialprecisionfermentationcancreatea$200billionmarketby2040,seventimesthecurrentsize,ifcompaniesbuildenoughproductioncapaci-tytolowercosts.

(SeeExhibit5.)

Indeed,theprimarycon-straintonultimatemarketsizeisbiomanufacturingcapac-ity.Therearepracticallimitstohowmuchandhowfast

suchcapacitycanbebuilt.

Marketsizingestimatesbyothershaverunintothetril-

lionsofdollars.We,however,focusexclusivelyonthemar-ketforthebioproductsproducedbythenewbiofoundries,whicharemostoftenusedasingredientinputs,andnot

themarketforformulatedfinishedproducts,which(as

noted)includemostoftheproductsmadetoday.Threeofthebiggestnear-termopportunitiesinvolvespecialtychem-icals,food,andchemicalprecursors.

(SeeExhibit6.)

Stan-dardizedbiofoundriescanserveallofthesemarkets,withconstructionfocusingonhigher-margin,lower-volume

moleculesfirst.

SpecialtyChemicals.Moleculesincludeenzymes,noned-ibleproteins(suchascollagenandsilks)fromanimal

sources,pigments,fragrances,andchemicalactivephar-

maceuticalingredientssuchascertainantibioticsand

statins.Inthissegment,biomanufacturingcurrentlycom-mandsanaveragecostpremiumof30%to50%,dependingonthemoleculesinvolved.Thesegmentalsoencompassescosmeticsandactiveingredientsthatareregulatedand

thereforerequirelargeandlengthyR&Dinvestments(fivetotenyearsforcosmetics,forexample).Weestimatethesegment’s2040marketpotentialat$50billion.

Food.Thepotentialbioproductmarketforfoodsincludesdairy,meatandeggproteins,fats,additives,andfooddyesandflavors.Companiesalreadyproduceseveralmolecules(includingsomevitamins,aminoacids,andflavors)at

scale,provingthedemandforsuchproducts.Current

biomanufacturingcostsforsomeproductsaretwotothreetimesashighasforthesameproductsmanufacturedby

incumbentmethods,butbiofoundriescouldlowerthose

coststoparityorbelow.Animalagricultureisresponsiblefor15%ofgreenhousegasemissionsandsignificantwaterandlandusage.Itprovokesethicalconcernsrelatedto

animalcruelty.Biomanufacturingoffersacompetitive,sustainable,cruelty-freealternative.

(See“PrecisionFer-

mentedFoods:TheNextWave?”)

Exhibit5-ReducingCostsCanUnlock$200BillioninDemand

SoScalingopportunity

Description

Pharma

biologics

Biopharmabiologics(e.g.,mRNAvaccines,insulin,

hormones,CAR-Tcells,

genetherapy,orantibodies)

Specialty

chemicals

Enzymes

Animal-basedand

plant-basedproteins

andlipids1

PigmentsandfragrancesChemicalAPIs

Food

Dairy,meat,and

eggproteins

Fats

Additives

Dyesandflavors

Chemicals

precursors

•Monomersandresins

•Fertilizersandpesticides

•Lubricants

•Fibers

2040marketpotential

$50billion

$100billion

$50billion

Margin

Volume

Source:BCGanalysis.

Note:API=activepharmaceuticalingredients.

1Forexample,collagen,silk,andpalmoil.

5BREAKINGTHECOSTBARRIERINBIOMANUFACTURING

Exhibit6-PotentialBiomanufacturingDevelopmentToward2040

Price($/kg)

10,000.00

100.00

1.00

0.01

Pharmabiologics

Specialtychemicals

.

Food

Chemicalprecursors

1

Volume(kilotons/year)

100

10,000

Evolutionofbioalternativesby2040CurrentproductionpriceCurrentnon-bioalternative

Source:BCGanalysis.

Thetaskofbuildingdemandstillfacesplentyofchalleng-es,includingtheneedforwidespreadcustomereducationandfornewrulesandregulations(includingforfoodlabel-ingandmanufacturingfacilitiesinspections).Regulatory

authoritiessuchastheFDAintheUSandtheEuropean

FoodSafetyAuthoritymustalsodevelopvalidationand

inspectionrulesandprocedurestofacilitatethedevelop-

mentofnew,sustainable,andsafeproductswithoutin-

creasingtime-to-market.Byachievingbothpriceparityanddecreasedemissions,theoverallfermentationfoodmarketshouldgrowto$100billionby2040.

ChemicalPrecursors.Today,chemicalprecursorsconsistofpetrochemicalcompoundssuchasethylene(whichafterpolymerizationbecomesPETplastic).Theyarea$600

billionmarketthatisgrowingat3%ayearalongwithfossilfuelproduction.Theproductsarecheaptomake,since

theyusecompoundsfoundasbyproductsofthefuelrefin-ingprocess.Theyarefoundinanarrayofendproducts,

includingpolymers(suchasplastic),resins,fertilizers,

pesticides,lubricants,clothfibers(suchaspolyester),andevendrugs(aspirin,forexample)andfoodadditives(thinktruffleflavor).Inthepast70years,theyhavedisplaced

preexistingmethodsandproductsthatsometimesusedfermentation(suchasammunitionproducedduringthetwoworldwars).

Becausechemicalprecursorsaresoinexpensivetopro-

duce,earlybiofoundriesmaystruggletocompete.None-

theless,weexpectamarketof$50billiontodevelopovertime.Specificproductsforwhichcostparityorincreased

performanceisachievablewillemerge.Wealsoexpect

furtherregulationorevenrestrictionofpetrochemicaluse,increasingcustomerinterestinbioalternativessuchas

bioplastics.Ultimately,astherecentCOP28agreement

suggests,petrochemicalusewilldeclinealongwithoil

production,whichwillopenfurtheropportunitiesforalter-natives.

CarbonBenefits.Inadditiontoreducinggreenhousegasemissions,byusingbiogenicratherthanfossil-derived

inputs,biofoundriesimproveyieldandenergyefficiencies,makingbiomanufacturingatscaleamoreappealingalter-nativeforproducingmostmolecules,fromthestandpointofCO2emissions.

(SeeExhibit7.)

BOSTONCONSULTINGGROUP+SYNONYM6

PrecisionFermentedFoods:TheNextWave?

Companiesarealreadyusingprecisionfermentationatscaletoproducesomeadditives.Productsincludeflavorenhancers(glutamicacid),acidifiers(citricacid,fumaricacid,andmalicacid),low-caloriesweeteners(aspartic

acid),andthickeningagents(xanthangum).Decreasingcostscouldenablecompaniestotargetnewmarkets.

Severaldyesandflavormoleculesarecurrentlybeing

supplantedbybioproducedequivalents.Theseincludeflavorssuchvanillin,santalol,menthol,Nootkatone,lac-tones,alpha-ionene,andvalencene,anddyessuchas

carminicacid(usedinproductsrangingfromcandytoyogurttosausage),anthocyanin,andcarotenoids.

Weexpectprecisionfermentationtounlockthenextwaveofgrowthin

alternativefoods

.Asthegrowthofplant-basedfoodsplateaus,precisionfermentationisonthecuspof

offeringnewalternativesformeat,eggs,dairy,additives,dyes,andflavors.

Forexample,multiplecompaniesarenowfermenting

varioustypesofproteinstoformulatesuchdairyendprod-uctsasmilk(includinginfantmilk),cheese,butter,and

cream.

Fermentationisalsowellsuitedtotheproductionofani-malproteinreplacements,suchaseggproteinformakingcakes,andheme(aprecursortohemoglobin)togivemoremeatlikeflavortoplant-basedalternatives.

Thankstothelatestdevelopmentsinstrainengineering,

thecostofdevelopingastrainforaspecificmoleculehasfallendrastically.Thisopensthewayforprecisionfermen-tationtoproducemoremoleculesthanbefore,without

beingrestrictedtoaddressingonlyverylargemarkets.In

thefuture,weexpectprecisionfermentationtoentermanymidsizeandsmallermarkets.

7BREAKINGTHECOSTBARRIERINBIOMANUFACTURING

Exhibit7-BiofoundriesReduceGreenhouseGasEmissionsintheProductionofMostMolecules

Nonexhaustive

ImprovementofkgCO2equivalentemissionperkgofproductbetweenconventionalandcurrentbio-basedproductionmethodsforselectedmolecules,withafurtherpotentialfor65%improvementafterfuturescale-up

–92%

4,500

–90%

17.4

–73%

1,000

4.9

–76%

1.3

4.9

3.7

1.9

1.7

1.3

355

0.5

Vanillin

DairyOilsSuccinicacid

ConventionalCurrentbio-basedFuturescale-up

Sources:DOIFoundation;BCGanalysis.

InvestingintheInfrastructureoftheFuture

Breakingthroughthecostconundrumthathasbedeviledbiomanufacturingwilldependoninvestmentcoalescing

behindstandardizeddesignsforbiofoundries.Leadtimesarelong,socorporatecustomersandgovernmentsarekeyplayersintheseearlystagesofkickinginvestmentand

constructionintogear.

Ourestimatesshowthatservinga$200billionmarket

requiresa20-foldexpansionofcurrentproductioncapacity.

(SeeExhibit8.)

By2040,theworldwillneed6,000new

fermentorsspreadacross1,000biofoundriesthathave2.4billionlitersoftotalcapacity.

(See“FermentationEconom-

ics.”)

Supplyingtheprimaryfeedstock,sugar,wouldtake65,000squarekilometers(40,000squaremiles)orroughlyequivalenttothelandmassofBavariaorWestVirginia.

Althoughthisisamassivechallenge,itisnotoutofreach.Bioethanol,whichrepresents10%to15%ofUSgasoline

consumption,hasalmostreachedpriceparitywithfossil

fuelsinasingledecade(thanksinpartgovernmentsman-dates)andhasbuilttheinfrastructuretosustaina$100

billionmarket.Althoughbioethanolfacilitiesaresimpler

andcheapertoconstruct,theyarecloseenoughtopreci-sionfermentationfacilitiestodemonstratefeasibility.

(See

“TheCornEthanolGrowthWave.”)

Theeventualphase-outofgasolinecarsalsowillfreeupalargequantityofcorn

andsugarforprecisionfermentation.

Theshifttolarge-scale,standardizedbiomanufacturing

sitesrepresentsanenormousopportunityforinfrastruc-

tureinvestment.

(SeeExhibit9.)

Somepilotfacilitiesandafewcommercial-scalefacilitiesnowexist,butstandardizingtheassetclassinlinewithofftakedemandwillunlock

capitalfromlater-stageinvestors.Thereisalreadyaninfra-structureconstructionopportunitystemmingfromhigherdemandthansupply.

(See“AnEmergingInfrastructure

AssetClass.”)

BOSTONCONSULTINGGROUP+SYNONYM8

FermentationEconomics

Boththestandardizationofbiomanufacturingfacilitiesandthedevelopmentofnewstrainsthatmakefurtherinnova-tionpossiblewillreducethecostsofproductionforthe

bioeconomy.Asthecostofproductionforanindividualproductfalls,demandforitwillincrease.

Realizingeconomiesofscaleisamatternotjustofthe

facility’stotalcapacitybutalsoofthesizeofitsfermentors.Forexample,a2.4-million-literfacilitythatoperatessix

400,000-literfermentorshaslowercapexandopexthanafacilitythatrunssixteen150,000-literfermentors.Further-morethefacilitywiththesixteen150,000-literfermentorswillhavelowercapexandopexperliterofcapacitythana600,000-literfacilitywithonlyfour150,000-literfermentors.

Thereareothervariablestoconsideraswell.Inbiofound-

ries,costsfallastanksizeincreases—uptoapointof

diminishingreturns.Facilitiesincurbaselineproduction

costsnomatterhowlargethefermentationtankis:base-

linequantitiesofenergyandmaterialsareneededtosteril-izethetank,formulateandsterilizethemedium,and

maintaincoolingwater.Therearetradeoffswithlarger

fermentorsizes.Tankslargerthan150,000litersrequire

fabricationinthefieldratherthanintheshop,which

meanslessqualitycontrol.Largerfermentorshaveahigh-ervolume-to-surface-arearatio,makingheatandmass

transferdesignmorechallenging.Andwithlargerfermen-tors,eachbatchisveryexpensive.Today,asingle

400,000-literfermentationbatchrequiresabout$100,000inrawmaterialsalone—soasinglefailureiscostly.Startupcostsarehigh,too,ascompaniesmustspendseveral

milliondollarsbeforeafacilitycangeneraterevenue.

Companiesmusttakeallofthesefactorsandothers—in-cludingtherobustnessofthemicrobestrain,theproduct

demand(forthecurrenttenantaswellasforpotential

futurefacilityusers),productpricing(margin),andavail-

ablefinancing—intoaccountwhenselectingthesizeofthefacilityandofthefermentors.Forthisreason,wearelikelytoseeamixofsizeandmakeup,whichwillincreasethe

importanceofstandardizingplantdesignandfeaturestolimitconstructionandoperatingcosts.

9BREAKINGTHECOSTBARRIERINBIOMANUFACTURING

•>$300million–$400million

•>60months

Biofoundry

>2millionliters

24(8%)

•Commercialproduction

•Continuousimprovement

Industrialscale

>100,000liters

•Scalabilitydemonstration

•Processandyieldrefinement

Pilot/demoscale

20,000–100,000liters

Subscale(92%)

255(84%)

Proofofconcept

Fundamentalresearch

Labscale

<20,000liters

Exhibit8-A$200BillionMarketRequiresa20-foldExpansionofCurrentCapacity

7xmarket($)

20xcapacity(liters)

$30billion

200millionliters

Currentfootprint

$50billion

500millionliters

Specialtychemicals

$50billion

1.5billionliters

Chemicalprecursors

$100billion

1.5billionliters

Food

Sources:Synonymanalysis;BCGanalysis.

Exhibit9-BiomanufacturingFacilitiesCanBeaNewAssetClass

Numberof

bioreactorsglobally

Facility

Usage

Capexandbuildtime

•Large-scaleproduction

•Non-pharmarequirements

24(8%)

•>$200million

•30–60months(bespokefacilitybuiltin-house)

•$5million–$50million(equipmentupgrades)

•3–12months(dependingonCMOavailabilityand

equipmentrequirements)

•$1million–$5million

•<6months(dependingonresearchlaboratoriesand

Total

universityavailability)

Sources:StateofGlobalFermentationCapacity2023;BCGanalysis(includingcaptivefacilitiesoflargechemicalplayers).

Note:CMO=contractmanufacturingorganization.

BOSTONCONSULTINGGROUP+SYNONYM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论