版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省乐山一中高三一诊考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}2.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.3.若直线经过抛物线的焦点,则()A. B. C.2 D.4.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.5.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.6.设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为()A. B. C.5 D.67.抛物线的焦点为,点是上一点,,则()A. B. C. D.8.已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是()A. B.C. D.9.已知,若,则等于()A.3 B.4 C.5 D.610.复数的共轭复数为()A. B. C. D.11.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为()A. B. C. D.12.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,斜率为的直线过且与抛物线交于两点,为坐标原点,若在第一象限,那么_______________.14.(5分)已知椭圆方程为,过其下焦点作斜率存在的直线与椭圆交于两点,为坐标原点,则面积的取值范围是____________.15.在等比数列中,,则________.16.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,,求的面积最小值.18.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.19.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.20.(12分)如图,在四棱锥中,,,,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.21.(12分)已知函数,.(1)求证:在区间上有且仅有一个零点,且;(2)若当时,不等式恒成立,求证:.22.(10分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上.求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.【点睛】本题考查集合的交集运算,属于基础题.2、C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.3、B【解析】
计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.4、C【解析】
根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.5、C【解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.6、A【解析】
根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.7、B【解析】
根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.8、B【解析】
利用换元法设,则等价为有且只有一个实数根,分三种情况进行讨论,结合函数的图象,求出的取值范围.【详解】解:设,则有且只有一个实数根.当时,当时,,由即,解得,结合图象可知,此时当时,得,则是唯一解,满足题意;当时,此时当时,,此时函数有无数个零点,不符合题意;当时,当时,,此时最小值为,结合图象可知,要使得关于的方程有且只有一个实数根,此时.综上所述:或.故选:A.【点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.9、C【解析】
先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.10、D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.11、D【解析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,,离心率,故选:D.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.12、B【解析】
三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为.故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
如图所示,先证明,再利用抛物线的定义和相似得到.【详解】由题得,.因为.所以,过点A、B分别作准线的垂线,垂足分别为M,N,过点B作于点E,设|BF|=m,|AF|=n,则|BN|=m,|AM|=n,所以|AE|=n-m,因为,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案为:2【点睛】本题主要考查直线和抛物线的位置关系,考查抛物线的定义,意在考查学生对这些知识的理解掌握水平.14、【解析】
由题意,,则,得.由题意可设的方程为,,联立方程组,消去得,恒成立,,,则,点到直线的距离为,则,又,则,当且仅当即时取等号.故面积的取值范围是.15、1【解析】
设等比数列的公比为,再根据题意用基本量法求解公比,进而利用等比数列项之间的关系得即可.【详解】设等比数列的公比为.由,得,解得.又由,得.则.故答案为:1【点睛】本题主要考查了等比数列基本量的求解方法,属于基础题.16、【解析】
根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.【详解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②①②联解,得,可得,∴双曲线的,结合,得离心率.故答案为:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)16.【解析】
(1)将极坐标方程化为直角坐标方程即可;(2)利用极径的几何意义,联立曲线,直线,直线的极坐标方程,得出,利用三角形面积公式,结合正弦函数的性质,得出的面积最小值.【详解】(1)曲线:,即化为直角坐标方程为:;(2),即同理∴当且仅当,即()时取等号即的面积最小值为16【点睛】本题主要考查了极坐标方程化直角坐标方程以及极坐标的应用,属于中档题.18、(1)(2)证明见解析【解析】
(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,,设的方程为,与联立消去得,,同理,直线的斜率=切线的斜率,由,即与互补.【点睛】本题考查直线与抛物线的位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题.19、(1);(2)【解析】
(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.【点睛】本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.20、(1)见证明;(2)【解析】
(1)取的中点,连接,要证平面平面,转证平面,即证,即可;(2)以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均为边长为的等边三角形,所以,,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以,又因为,所以,,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,,,,,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.21、(1)详见解析;(2)详见解析.【解析】
(1)利用求导数,判断在区间上的单调性,然后再证异号,即可证明结论;(2)当时,不等式恒成立,分离参数只需时,恒成立,设(),需,根据(1)中的结论先求出,再构造函数结合导数法,证明即可.【详解】(1),令,则,所以在区间上是增函数,则,所以在区间上是增函数.又因为,,所以在区间上有且仅有一个零点,且.(2)由题意,在区间上恒成立,即在区间上恒成立,当时,;当时,恒成立,设(),所以.由(1)可知,,使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年原创作品出版合同2篇
- 2024年PPP合同条款解读与风险提示3篇
- 2024年度广告合同法律制度分析3篇
- 2024年二手车买卖介绍合同2篇
- 临时加工电源租赁服务协议
- 学校活动篮球场地租赁合同
- 艺术馆硅PU施工合同
- 医学插画创作画师合作合同
- 陶瓷制品采购管理办法
- 水利水电承台施工合同
- 《孕产妇的营养浙大》课件
- 2024年中国泳池循环泵市场调查研究报告
- 《城市轨道交通工程流态固化土应用技术标准》征求意见稿文本
- 2024至2030年SEM安全保密模块项目投资价值分析报告
- 冷链物流仓储基地建设项目可行性研究报告
- 民办学校教师招聘与管理制度
- 2024-2030年版中国滑板及滑板车市场竞争力策略及发展潜力分析报告
- 13《我们小声儿点》说课稿-2024-2025学年道德与法治一年级上册统编版
- 江苏省盐城市2024-2025学年高三上学期11月期中英语试题 含答案
- 2025年四川省新高考八省适应性联考模拟演练二历史试卷(含答案)
- 药品经营使用和质量监督管理办法2024年宣贯培训课件
评论
0/150
提交评论