专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版)_第1页
专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版)_第2页
专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版)_第3页
专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版)_第4页
专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版)_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题12一次函数与几何图形综合题(与三角形、与平行四边形、最值问题)类型一与三角形有关1.(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积,其中分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知,,则内部的格点个数是(

)A.266 B.270 C.271 D.285【答案】C【分析】首先根据题意画出图形,然后求出的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,

∵,,∴,∵上有31个格点,上的格点有,,,,,,,,,,共10个格点,上的格点有,,,,,,,,,,,,,,,,,,,共19个格点,∴边界上的格点个数,∵,∴,∴解得.∴内部的格点个数是271.故选:C.【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.2.(2023·湖北荆州·统考中考真题)如图,直线分别与轴,轴交于点,,将绕着点顺时针旋转得到,则点的对应点的坐标是()

A. B. C. D.【答案】C【分析】先根据一次函数解析式求得点的坐标,进而根据旋转的性质可得,,,进而得出,结合坐标系,即可求解.【详解】解:∵直线分别与轴,轴交于点,,∴当时,,即,则,当时,,即,则,∵将绕着点顺时针旋转得到,又∵∴,,,∴,延长交轴于点,则,,∴,

故选:C.【点睛】本题考查了一次函数与坐标轴交点问题,旋转的性质,坐标与图形,掌握旋转的性质是解题的关键.3.(2023·黑龙江绥化·统考中考真题)如图,在平面直角坐标系中,与的相似比为,点是位似中心,已知点,点,.则点的坐标为_______.(结果用含,的式子表示)

【答案】【分析】过点分别作轴的垂线垂足分别为,根据题意得出,则,得出,即可求解.【详解】解:如图所示,过点分别作轴的垂线垂足分别为,

∵与的相似比为,点是位似中心,∴∵,∴,∴,∴∴故答案为:.【点睛】本题考查了求位似图形的坐标,熟练掌握位似图形的性质是解题的关键.4.(2023·山东东营·统考中考真题)如图,一束光线从点出发,经过y轴上的点反射后经过点,则的值是___________.

【答案】-1【分析】如图,过点A作,点C作,垂足分别为G,F,可证,得比例线段,由,得线段长度,,代入比例线段求解.【详解】如图,过点A作,点C作,垂足分别为G,F

由题意知,,∴∴∵,∴,∴∴∴故答案为:【点睛】本题考查相似三角形的判定和性质,直角坐标系内点坐标的含义,添加辅助线构建相似三角形是解题的关键.5.(2020·宁夏中考真题)如图,直线与x轴、y轴分别交于A、B两点,把绕点B逆时针旋转90°后得到,则点的坐标是_____.【答案】(4,)【解析】【分析】首先根据直线AB来求出点A和点B的坐标,A1的横坐标等于OB,而纵坐标等于OB-OA,即可得出答案.【详解】解:在中,令x=0得,y=4,令y=0,得,解得x=,∴A(,0),B(0,4),由旋转可得△AOB≌△A1O1B,∠ABA1=90°,∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,∴∠OBO1=90°,∴O1B∥x轴,∴点A1的纵坐标为OB-OA的长,即为4=;横坐标为O1B=OB=4,故点A1的坐标是(4,),故答案为:(4,).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.6.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系中,点B的坐标为,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线与交于点D.与y轴交于点E.动点M在线段上,动点N在直线上,若是以点N为直角顶点的等腰直角三角形,则点M的坐标为

【答案】或【分析】如图,由是以点N为直角顶点的等腰直角三角形,可得在以为直径的圆上,,可得是圆与直线的交点,当重合时,符合题意,可得,当N在的上方时,如图,过作轴于,延长交于,则,,证明,设,可得,,而,则,再解方程可得答案.【详解】解:如图,∵是以点N为直角顶点的等腰直角三角形,∴在以为直径的圆上,,∴是圆与直线的交点,

当重合时,∵,则,∴,符合题意,∴,当N在的上方时,如图,过作轴于,延长交于,则,,∴,

∵,,∴,∴,∴,设,∴,,而,∴,解得:,则,∴,∴;综上:或.故答案为:或.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.7.(2023·四川自贡·统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接.当取最小值时,的最小值是.

【答案】【分析】作出点,作于点D,交x轴于点F,此时的最小值为的长,利用解直角三角形求得,利用待定系数法求得直线的解析式,联立即可求得点D的坐标,过点D作轴于点G,此时的最小值是的长,据此求解即可.【详解】解:∵直线与x轴,y轴分别交于A,B两点,∴,,作点B关于x轴的对称点,把点向右平移3个单位得到,作于点D,交x轴于点F,过点作交x轴于点E,则四边形是平行四边形,此时,,∴有最小值,作轴于点P,

则,,∵,∴,∴,∴,即,∴,则,设直线的解析式为,则,解得,∴直线的解析式为,联立,,解得,即;过点D作轴于点G,

直线与x轴的交点为,则,∴,∴,∴,即的最小值是,故答案为:.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.8.(2023·江苏无锡·统考中考真题)二次函数的图像与x轴交于点、,与轴交于点,过点的直线将分成两部分,这两部分是三角形或梯形,且面积相等,则的值为.【答案】或或【分析】先求得,,,直线解析式为,直线的解析式为,1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线,则①如图1,直线过中点,②如图2,直线过中点,直线解析式为,中点坐标为,待入直线求得;③如图3,直线过中点,中点坐标为,直线与轴平行,必不成立;2)当分成三角形和梯形时,过点的直线必与一边平行,所以必有型相似,因为平分面积,所以相似比为.④如图4,直线,根据相似三角形的性质,即可求解;⑤如图5,直线,⑥如图6,直线,同理可得,进而根据,即可求解.【详解】解:由,令,解得:,令,解得:,∴,,,设直线解析式为,∴解得:∴直线解析式为,当时,,则直线与y轴交于,∵,∴,∴点必在内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线的解析式为∴解得:则直线的解析式为①如图1,直线过中点,,中点坐标为,代入直线求得,不成立;

②如图2,直线过中点,直线解析式为,中点坐标为,待入直线求得;③如图3,直线过中点,中点坐标为,直线与轴平行,必不成立;2)、当分成三角形和梯形时,过点的直线必与一边平行,所以必有型相似,因为平分面积,所以相似比为.④如图4,直线,∴∴,∴,解得;

⑤如图5,直线,,则∴,又,∴,∵,∴不成立;⑥如图6,直线,同理可得,∴,,,∴,解得;综上所述,或或.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.9.(2021·广西贺州市·中考真题)如图,一次函数与坐标轴分别交于,两点,点,分别是线段,上的点,且,,则点的标为________.【答案】【分析】过P作PD⊥OC于D,先求出A,B的坐标,得∠ABO=∠OAB=45°,再证明△PCB≌△OPA,从而求出BD=2,OD=4−2,进而即可求解.【详解】如图所示,过P作PD⊥OC于D,∵一次函数与坐标轴分别交于A,两点,∴A(-4,0),B(0,4),即:OA=OB,∴∠ABO=∠OAB=45°,∴△BDP是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=BP÷=2,∴OD=OB−BD=4−2,∴P(-2,4−2).故答案是:P(-2,4−2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.10.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A(-2,0),直线与x轴交于点B,以AB为边作等边,过点作轴,交直线l于点,以为边作等边,过点作轴,交直线l于点,以为边作等边,以此类推……,则点的纵坐标是______________【答案】【解析】【分析】如图,过A1作A1C⊥AB与C,过A2作A2C1⊥A1B1于C1,过A3作A3C2⊥A2B2于C2,先根据直线方程与x轴交于点B(-1,0),且与x轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A1、A2、A3、的纵坐标,进而得到An的纵坐标,据此可得A2020的纵坐标,即可解答.【详解】如图,过A1作A1C⊥AB与C,过A2作A2C1⊥A1B1于C1,过A3作A3C2⊥A2B2于C2,先根据直线方程与x轴交于点B(-1,0),与y轴交于点D(0,),∴OB=1,OD=,∴∠DBO=30º由题意可得:∠A1B1B=∠A2B2B1=30º,∠B1A1B=∠B2A2B1=60º∴∠A1BB1=∠A2B1B2=90º,∴AB=1,A1B1=2A1B=21,A2B2=2A2B1=22,A3B3=2A3B2=23,…AnBn=2n

∴A1C=AB=×1,A1纵坐标为×1=;A2C1=A1B1=,A2的纵坐标为×1+===;A3C2=A2B2=,A3的纵坐标为×1++===;…由此规律可得:AnCn-1=,An的纵坐标为=,∴A2020=,故答案为:【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.11.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点在直线上,过点作,交轴于点;过点作轴,交直线于点;过点作,交轴于点;过点作轴,交直线于点;…;按此作法进行下去,则点的坐标为_____________.【答案】(,0).【分析】根据题目所给的解析式,求出对应的坐标,然后根据规律求出的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N作NM⊥x轴于M将代入直线解析式中得∴,45°∵90°∴∵∴∴的坐标为(2,0)同理可以求出的坐标为(4,0)同理可以求出的坐标为(8,0)同理可以求出的坐标为(,0)∴的坐标为(,0)故答案为:(,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.12.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A的坐标为,点B在直线上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若,求证:.②若,求四边形的面积.(2)是否存在点B,使得以为顶点的三角形与相似?若存在,求OB的长;若不存在,请说明理由.【答案】(1)①见解析;②;(2)存在,,4,9,1【分析】(1)①等腰三角形等角对等边,则,根据等角的余角相等和对顶角相等,得到,根据等角对等边,即可证明;②添加辅助线,过点A作于点H,根据直线l的解析式和角的关系,分别求出线段AB、BC、OB、OC的长,则;(2)分多钟情况进行讨论:①当点C在第二象限内,时;②当点C在第二象限内,时;③当点C在第四象限内,时.【详解】解:(1)①证明:如图1,∵,∴.∴,∴.而,∴.∵,∴.∴,∴.②如图1,过点A作于点H.由题意可知,在中,.设,.∵,∴,解得.∴.∵,∴,∴∴.∵,∴,∴,:∴.(2)过点A作于点H,则有.①如图2,当点C在第二象限内,时,设∵,∴.又∵,∴.∵,∴,∴,∴,∴,∴,整理得,解得.∴.②如图3,当点C在第二象限内,时,延长交于点G,则,∴.又∵,∴,而,∴,∴③当点C在第四象限内,时,与相交于点E,则有.(a)如图4,点B在第三象限内.在中,,∴∴,又∵,∴,而∴,∴∴,∴,∴(b)如图5,点B在第一象限内.在中∴,∴.又∵,∴而,∴∴∴,∴,∴综上所述,的长为,4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.13.如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.(1)当点在上时,求点与点的最短距离;(2)若点在上,且将的面积分成上下4:5两部分时,求的长;(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.【答案】(1);(2);(3)当时,;当时,;(4)【解析】【分析】(1)根据当点在上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得,根据=可得,可得,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度==,然后先求出从Q平移到K耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点在上时,PA⊥BC时PA最小,∵AB=AC,△ABC为等腰三角形,∴PAmin=tanC·=×4=3;(2)过A点向BC边作垂线,交BC于点E,S上=S△APQ,S下=S四边形BPQC,∵,∴PQ∥BC,∴△APQ∽△ABC,∴,∴,当=时,,∴,AE=·,根据勾股定理可得AB=5,∴,解得MP=;(3)当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,由(2)可知sinC=,∴d=PQ,∵AP=x+2,∴,∴PQ=,∴d==,当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,d=CP·sinC=(11-x)=-x+,综上;(4)AM=2<AQ=,移动的速度==,①从Q平移到K,耗时:=1秒,②P在BC上时,K与Q重合时CQ=CK=5-=,∵∠APQ+∠QPC=∠B+∠BAP,∴∠QPC=∠BAP,又∵∠B=∠C,∴△ABP∽△PCQ,设BP=y,CP=8-y,,即,整理得y2-8y=,(y-4)2=,解得y1=,y2=,÷=10秒,÷=22秒,∴点被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.14.如图1,平面直角坐标系中,等腰的底边在轴上,,顶点在的正半轴上,,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点从点出发,以相同的速度沿向左运动,到达点停止.已知点、同时出发,以为边作正方形,使正方形和在的同侧.设运动的时间为秒().(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动.请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,,理由见解析;(3)可能,或或理由见解析【解析】【分析】(1)用待定系数法求出直线AC的解析式,根据题意用t表示出点H的坐标,代入求解即可;(2)根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t﹥4,用待定系数法求出直线AB的解析式,求出点H落在BC边上时的t值,求出此时重叠面积为﹤,进一步求出重叠面积关于t的表达式,代入解t的方程即可解得t值;(3)由已知求得点D(2,1),AC=,OD=OC=OA=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC的函数解析式为y=kx+b,将点A、C坐标代入,得:,解得:,∴直线AC的函数解析式为,当点落在边上时,点E(3-t,0),点H(3-t,1),将点H代入,得:,解得:t=1;(2)存在,,使得.根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t﹥4,设直线AB的函数解析式为y=mx+n,将点A、B坐标代入,得:,解得:,∴直线AC的函数解析式为,当t﹥4时,点E(3-t,0)点H(3-t,t-3),G(0,t-3),当点H落在AB边上时,将点H代入,得:,解得:;此时重叠的面积为,∵﹤,∴﹤t﹤5,如图1,设GH交AB于S,EH交AB于T,将y=t-3代入得:,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t代入得:,∴点T,∴AG=5-t,SG=10-2t,BE=7-t,ET=,,所以重叠面积S==4--=,由=得:,﹥5(舍去),∴;(3)可能,≤t≤1或t=4.∵点D为AC的中点,且OA=2,OC=4,∴点D(2,1),AC=,OD=OC=OA=,易知M点在水平方向以每秒是4个单位的速度运动;当0﹤t﹤时,M在线段OD上,H未到达D点,所以M与正方形不相遇;当﹤t﹤1时,+÷(1+4)=秒,∴时M与正方形相遇,经过1÷(1+4)=秒后,M点不在正方行内部,则;当t=1时,由(1)知,点F运动到原E点处,M点到达C处;当1≤t≤2时,当t=1+1÷(4-1)=秒时,点M追上G点,经过1÷(4-1)=秒,点都在正方形内(含边界),当t=2时,点M运动返回到点O处停止运动,当t=3时,点E运动返回到点O处,当t=4时,点F运动返回到点O处,当时,点都在正方形内(含边界),综上,当或或时,点可能在正方形内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.15.已知,在平面直角坐标系中,点为坐标原点,直线与轴的正半轴交于点A,与轴的负半轴交于点B,,过点A作轴的垂线与过点O的直线相交于点C,直线OC的解析式为,过点C作轴,垂足为.(1)如图1,求直线的解析式;(2)如图2,点N在线段上,连接ON,点P在线段ON上,过P点作轴,垂足为D,交OC于点E,若,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作轴的平行线交BQ于点G,连接PF交轴于点H,连接EH,若,求点P的坐标.【答案】(1);(2);(3).【解析】【分析】(1)根据题意求出A,B的坐标即可求出直线AB的解析式;(2)求出N(3,9),以及ON的解析式为y=3x,设P(a,3a),表达出PE及OD即可解答;(3)如图,设直线GF交CA延长线于点R,交y轴于点S,过点F作FT⊥x轴于点T,先证明四边形OSRA为矩形,再通过边角关系证明△OFS≌△FQR,得到SF=QR,进而证明△BSG≌△QRG,得到SG=RG=6,设FR=m,根据,以及在Rt△GQR中利用勾股定理求出m的值,得到FS=8,AR=4,证明四边形OSFT为矩形,得到OT=FS=8,根据∠DHE=∠DPH,利用正切函数的定义得到,从而得到DH=,根据∠PHD=∠FHT,得到HT=2,再根据OT=OD+DH+HT,列出关于a的方程即可求出a的值,从而得到点P的坐标.【详解】解:(1)∵CM⊥y轴,OM=9,∴当y=9时,,解得:x=12,∴C(12,9),∵CA⊥x轴,则A(12,0),∴OB=OA=12,则B(0,-12),设直线AB的解析式为y=kx+b,∴,解得:,∴;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC为矩形,∴MC=OA=12,∵NC=OM,∴NC=9,则MN=MC-NC=3,∴N(3,9)设直线ON的解析式为,将N(3,9)代入得:,解得:,∴y=3x,设P(a,3a)∵PD⊥x轴交OC于点E,交x轴于点D,∴,,∴PE=,OD=a,∴;(3)如图,设直线GF交CA延长线于点R,交y轴于点S,过点F作FT⊥x轴于点T,∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴AF=,∵,∴GQ=,∵QG2=GR2+QR2,即,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT为矩形,∴OT=FS=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴,由(2)可知,DE=,PD=3a,∴,解得:DH=,∴tan∠PHD=,∵∠PHD=∠FHT,∴tan∠FHT=,∴HT=2,∵OT=OD+DH+HT,∴,∴a=,∴【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关16.在平面直角坐标系中,O为原点,点,点B在y轴的正半轴上,.矩形的顶点D,E,C分别在上,.将矩形沿x轴向右平移,当矩形与重叠部分的面积为时,则矩形向右平移的距离为___________.【答案】2【解析】【分析】先求出点B的坐标(0,),得到直线AB的解析式为:,根据点D的坐标求出OC的长度,利用矩形与重叠部分的面积为列出关系式求出,再利用一次函数关系式求出=4,即可得到平移的距离.【详解】∵,∴OA=6,在Rt△AOB中,,∴,∴B(0,),∴直线AB的解析式为:,当x=2时,y=,∴E(2,),即DE=,∵四边形CODE是矩形,∴OC=DE=,设矩形沿x轴向右平移后得到矩形,交AB于点G,∴∥OB,∴△∽△AOB,∴∠=∠AOB=30°,∴∠=∠=30°,∴,∵平移后的矩形与重叠部分的面积为,∴五边形的面积为,∴,∴,∴,∴矩形向右平移的距离=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.17.(2022·山东泰安)如图,四边形为平行四边形,则点B的坐标为________.【答案】【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解:四边形为平行四边形,,即将点平移到的过程与将点平移到的过程保持一致,将点平移到的过程是:(向左平移4各单位长度);(上下无平移);将点平移到的过程按照上述一致过程进行得到,即,故答案为:.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.18.(2022·甘肃武威)如图1,在菱形中,,动点从点出发,沿折线方向匀速运动,运动到点停止.设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为(

)A. B. C. D.【答案】B【分析】根据图1和图2判定三角形ABD为等边三角形,它的面积为解答即可.【详解】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为,∴△ABD的面积解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.19.(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,的顶点B,C在x轴上,D在y轴上,,的长是方程的两个根().请解答下列问题:(1)求点B的坐标;(2)若,直线分别交x轴、y轴、于点E,F,M,且M是的中点,直线交延长线于点N,求的值;(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.【答案】(1)(2)(3)存在,等腰三角形的个数是8个,,,,【分析】(1)解方程得到,的长,从而得到点B的坐标;(2)由,,得.由,是中点,得到点M的坐标,代入直线中,求得b的值,从而得到直线的解析式,进而求得点E,点F的坐标,由坐标特点可得.过点C作于H,过点N作于K.从而,,进而得到,易证,可得,因此,由可得,,,从而通过解直角三角形在中,得到,在中,,因此求得,最终可得结果;(3)分,,三大类求解,共有8种情况.【详解】(1)解方程,得,.

,,.;(2),.四边形是平行四边形,,.是中点,..将代入,得..

,..过点C作于H,过点N作于K.,.∴∵∴∴∴∴∵∴,,∴在中,在中,∴∴(3)解:由(2)知:直线解析式为,,设,,①当时,,,解得或,或,∴,,,,如图,、、、都是以5为腰的等腰三角形,;②当时,由①知:,,∵,∴不可能等于5,如图,,都是以5为腰的等腰三角形,;③当时,由①知:,,当时,,解得(舍去),,∴,如图,当时,,解得(舍去),,∴,如图,综上,等腰三角形的个数是8个,符合题意的Q坐标为,,,【点睛】本题考查了一次函数的图像与性质,一次函数与平行四边形,等腰三角形的综合问题,数形结合思想是解题的关键.20.(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形的顶点A在轴的正半轴上,如图2,将正方形绕点逆时针旋转,旋转角为,交直线于点,交轴于点.

(1)当旋转角为多少度时,;(直接写出结果,不要求写解答过程)(2)若点,求的长;(3)如图3,对角线交轴于点,交直线于点,连接,将与的面积分别记为与,设,,求关于的函数表达式.【答案】(1)(2)(3)【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出,再由题意得出,即可求解;(2)过点A作轴,根据勾股定理及点的坐标得出,再由相似三角形的判定和性质求解即可;(3)根据正方形的性质及四点共圆条件得出O、C、F、N四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出,,过点N作于点G,交于点Q,利用全等三角形及矩形的判定和性质得出,结合图形分别表示出,,得出,再由等腰直角三角形的性质即可求解.【详解】(1)解:∵正方形,∴,,∵,∴,∴,∵,∴,∵交直线于点,∴,∴,即;

(2)过点A作轴,如图所示:

∵,∴,∴,∵正方形,∴,,∴,∵,∴,∴即,∴;(3)∵正方形,∴,∵直线,∴,∴,∴O、C、F、N四点共圆,∴,∴,∴为等腰直角三角形,∴,,过点N作于点G,交于点Q,

∵,∴,∵,∴,∵,∴,∴∴,∵,,∴四边形为矩形,∴,∴,,∴,∵,∴为等腰直角三角形,∴,∴【点睛】题目主要考查全等三角形、相似三角形及特殊四边形的判定和性质,四点共圆的性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.21.(2020·黑龙江牡丹江?中考真题)如图,已知直线与x轴交于点A,与y轴交于点B,线段的长是方程的一个根,.请解答下列问题:(1)求点A,B的坐标;(2)直线交x轴负半轴于点E,交y轴正半轴于点F,交直线于点C.若C是的中点,,反比例函数图象的一支经过点C,求k的值;(3)在(2)的条件下,过点C作,垂足为D,点M在直线上,点N在直线上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.【答案】(1)A(9,0),B(0,);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A的坐标,再根据可得点B坐标;(2)利用待定系数法求出直线AB的表达式,根据点C是EF的中点,得到点C横坐标,代入可得点C坐标,根据点C在反比例函数图像上求出k值;(3)画出图形,可得点P共有5个位置,分别求解即可.【详解】解:(1)∵线段的长是方程的一个根,解得:x=9或-2(舍),而点A在x轴正半轴,∴A(9,0),∵,∴B(0,);(2)∵,∴E(-6,0),设直线AB的表达式为y=kx+b,将A和B代入,得:,解得:,∴AB的表达式为:,∵点C是EF的中点,∴点C的横坐标为-3,代入AB中,y=6,则C(-3,6),∵反比例函数经过点C,则k=-3×6=-18;(3)存在点P,使以D,M,N,P为顶点的四边形是正方形,如图,共有5种情况,在四边形DM1P1N1中,M1和点A重合,∴M1(9,0),此时P1(9,12);在四边形DP3BN3中,点B和M重合,可知M在直线y=x+3上,联立:,解得:,∴M(1,4),∴P3(1,0),同理可得:P2(9,-12),P4(-7,4),P5(-15,0).故存在点P使以D,M,N,P为顶点的四边形是正方形,点P的坐标为P1(9,12),P2(9,-12),P3(1,0),P4(-7,4),P5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题22.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为()A. B. C. D.【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(,),则PM=,QM=,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N,在△PQM和△Q′PN中,,∴△PQM≌△Q′PN(AAS),∴PN=QM=,Q′N=PM=,∴ON=1+PN=,∴Q′(,),∴OQ′2=()2+()2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键23.已知点和直线,求点P到直线的距离d可用公式计算.根据以上材料解决下面问题:如图,的圆心C的坐标为,半径为1,直线l的表达式为,P是直线l上的动点,Q是上的动点,则的最小值是()A. B. C. D.2【答案】B【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论