版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市交大阳光中学高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,若有三个零点,则实数的取值范围是(
)A.
B.C.
D.参考答案:A2.已知集合,则
(
)A.{(-1,1),(1,1)} B.[0,2] C.[0,1]
D.{1}参考答案:B,,,故选B.
3.某生产厂商更新设备,已知在未来年内,此设备所花费的各种费用总和(万元)与满足函数关系,若欲使此设备的年平均花费最低,则此设备的使用年限为()A.3B.4C.5D.6参考答案:B.试题分析:平均话费为,当且仅当,时,等号成立,故选B.考点:基本不等式求最值.4.已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},则CU(A∪B)等于A{6,8}
B{5,7}
C{4,6,7}
D{1,3,5,6,8}参考答案:A略5.若三棱锥的所有顶点都在球的球面上,⊥平面,,,,则球的表面积为
(
)A.
B.
C.
D.参考答案:B略6.已知扇形的周长是4cm,则扇形面积最大时候扇形的中心角弧度数是()A.2 B.1 C. D.3参考答案:A【考点】扇形面积公式.【分析】设扇形的中心角弧度数为α,半径为r,可得2r+αr=4,α=,因此S=αr2=(2﹣r)r,再利用基本不等式的性质即可得出.【解答】解:设扇形的中心角弧度数为α,半径为r,则2r+αr=4,∴α=,∴S=αr2=××r2=(2﹣r)r≤()2=1,当且仅当2﹣r=r,解得r=1时,扇形面积最大.此时α=2.故选:A.7.复数满足(其中为虚数单位),则=
A.
B.
C.
D.参考答案:B8.等差数列中,如果,那么的最大值为(
)
A.2
B.4
C.8
D.16参考答案:B
考点:(1)等差数列的性质;(2)均值不等式.9.高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有(
).A.16种
B.18种
C.37种
D.48种参考答案:C误解:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有种方案.错因分析:显然这里有重复计算.如:班先派去了甲工厂,班选择时也去了甲工厂,这与班先派去了甲工厂,班选择时也去了甲工厂是同一种情况,而在上述解法中当作了不一样的情况,并且这种重复很难排除.正解:用间接法.先计算3个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即:种方案.10.在△ABC中,,.若点D满足,则=(
) A. B. C. D.参考答案:A考点:向量加减混合运算及其几何意义.分析:把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.解答: 解:∵由,∴,∴.故选A点评:用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的二、填空题:本大题共7小题,每小题4分,共28分11.已知,则=____________.参考答案:略12.若,则角是
A.第一或第二象限角
B.第二或第三象限角C.第三或第四象限角
D.第二或第四象限角参考答案:D因为,则角是第二或第四象限角,选D
13.已知随机变量的分布列如图所示,则
,
.1230.20.40.4参考答案:14.在中,是的中点,点列()在线段上,且满足,若,则数列的通项公式
参考答案:
15.已知关于实数x,y的不等式组构成的平面区域为,若,使得恒成立,则实数m的最小值是______.参考答案:【分析】由,使得恒成立可知,只需求出的最大值即可,再由表示平面区域内的点与定点距离的平方,因此结合平面区域即可求出结果.【详解】作出约束条件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目标函数,则目标函数表示平面区域内的点与定点距离的平方,由图像易知,点到的距离最大.由得,所以.因此,即的最小值为37.故答案为37【点睛】本题主要考查简单的线性规划问题,只需分析清楚目标函数的几何意义,即可结合可行域来求解,属于常考题型.16.函数的递增区间为
。参考答案:令,则在定义域上单调递增,而,在上单调递增,所以函数的递增区间为。17.已知函数,则的最小正周期为
在上的值域为
参考答案:π,
[0,1]三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在等差数列中,,其前项和为,等比数列的各项均为正数,,且,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求的最大值与最小值.参考答案:(1)设等差数列的公差为,等比数列的公比为,则,解得,,所以,.(2)由(1)得,故,当为奇数时,,随的增大而减小,所以;当为偶数时,,随的增大而增大,所以,令,,则,故在时是增函数.故当为奇数时,;当为偶数时,,综上所述,的最大值是,最小值是.19.已知函数f(x)=mx﹣,g(x)=2lnx.(Ⅰ)当m=1时,判断方程f(x)=g(x)在区间(1,+∞)上有无实根.(Ⅱ)若x∈(1,e]时,不等式f(x)﹣g(x)<2恒成立,求实数m的取值范围.参考答案:【考点】函数恒成立问题;根的存在性及根的个数判断.【专题】综合题;导数的综合应用.【分析】(Ⅰ)m=1时,令,求导数,证明h(x)在(0,+∞)上为增函数,利用h(1)=0,可得结论;(Ⅱ)恒成立,即m(x2﹣1)<2x+2xlnx恒成立,又x2﹣1>0,则当x∈(1,e]时,恒成立,构造函数,只需m小于G(x)的最小值.【解答】解:(Ⅰ)m=1时,令,…,…∴h(x)在(0,+∞)上为增函数…又h(1)=0,∴f(x)=g(x)在(1,+∞)内无实数根…(Ⅱ)恒成立,即m(x2﹣1)<2x+2xlnx恒成立,又x2﹣1>0,则当x∈(1,e]时,恒成立,…令,只需m小于G(x)的最小值,,…∵1<x≤e,∴lnx>0,∴当x∈(1,e]时,G′(x)<0,∴G(x)在(1,e]上单调递减,∴G(x)在(1,e]的最小值为,则m的取值范围是…【点评】本题考查导数知识的综合运用,考查函数的单调性,考查恒成立问题,正确分离参数,构造函数求最值是关键.20.在中,已知.(1)若,求的值;(2)若,点在边上,满足,求的长度.参考答案:(1);(2).考点:正弦定理余弦定理等有关知识的综合运用.21.(本题12分)已知函数是定义在上的奇函数,当时,,(1)求函数的解析式;(2)已知恒成立,求常数的取值范围.参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购合同培训讲师团队风采3篇
- 遗址命名规范研究-洞察分析
- 采购合同的环保要求分析3篇
- 采购合同风险识别与规避策略解析分享3篇
- 采购合同条款的翻译与解读3篇
- 采购合同框架协议的合作原则3篇
- 采购合同评审表的规范3篇
- 采购合同买卖合同的培训感言3篇
- 采购合同要素的深度解读3篇
- 采购合同的供应链社会责任管理3篇
- 小学劳动教育培训心得体会
- 2023部编人教版八年级上册道德与法治知识点提纲
- 乙肝五项操作规程(胶体金法)
- 15《石狮》(说课稿)- 2022-2023学年美术五年级上册 岭南版
- ROV的结构设计及关键技术研究的任务书
- 2022沪教版小学数学二年级上册期末试卷含部分答案(三套)
- 湖南省长沙市雅礼教育集团2022-2023学年七年级上学期期末英语试卷
- 全《12个维度细化部门管理》市场部部门职责
- 部编版小学四年级语文上册复习教案课程
- 演示文稿产品拍摄及后期图片处理
- 【康恩贝药业企业内部审计存在的问题及优化对策分析案例(论文)10000字】
评论
0/150
提交评论