版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省淮安市淮安区达标名校2024届中考数学猜题卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,) B.(2,) C.(,) D.(,3﹣)2.在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0 C.4 D.3.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()A. B. C. D.4.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于()A.10° B.12.5° C.15° D.20°5.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0 B.ab>0 C.1a+6.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是()A.a< B.a> C.a<﹣ D.a>﹣7.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大8.计算(-18)÷9的值是()A.-9 B.-27 C.-2 D.29.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是()cm.A.7 B.11 C.13 D.1610.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2二、填空题(共7小题,每小题3分,满分21分)11.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.12.计算:2﹣1+=_____.13.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).14.已知a+b=4,a-b=3,则a2-b2=____________.15.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.16.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为17.不等式组的解集是____________;三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.19.(5分)计算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)020.(8分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长.21.(10分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.22.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=2523.(12分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.求反比例函数和一次函数的表达式;求当时自变量的取值范围.24.(14分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,AF=,求图中阴影部分的面积.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.2、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,1,这四个数中,﹣3<0<<1,最大的数是1.故选C.3、D【解析】试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.4、C【解析】试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故选C.考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.5、C【解析】
本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、因为b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故选项A错误;B、因为b<0<a,所以ab<0,故选项B错误;C、因为b<-1<0<a<1,所以1a+1D、因为b<-1<0<a<1,所以1a-1故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.6、D【解析】
先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.【详解】解方程3x+2a=x﹣5得x=,因为方程的解为负数,所以<0,解得:a>﹣.【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.7、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为==188,方差为S2==;换人后6名队员身高的平均数为==187,方差为S2==∵188>187,>,∴平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8、C【解析】
直接利用有理数的除法运算法则计算得出答案.【详解】解:(-18)÷9=-1.
故选:C.【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.9、C【解析】
直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【详解】∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.【点睛】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.10、D【解析】
解不等式得到x≥m+3,再列出关于m的不等式求解.【详解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣1的解集为x≥4,∴m+3=4,解得m=1.故选D.考点:不等式的解集二、填空题(共7小题,每小题3分,满分21分)11、.【解析】
作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【详解】解:如图作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋转的性质可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积==,故答案:.【点睛】本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.12、【解析】根据负整指数幂的性质和二次根式的性质,可知=.故答案为.13、15π【解析】
根据圆的面积公式、扇形的面积公式计算即可.【详解】圆锥的母线长==5,,圆锥底面圆的面积=9π圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,∴圆锥的侧面展开图的面积=×6π×5=15π,【点睛】本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.14、1.【解析】
a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.15、﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.16、【解析】
因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.17、﹣9<x≤﹣1【解析】
分别求出两个不等式的解集,再求其公共解集.【详解】,解不等式①,得:x≤-1,解不等式②,得:x>-9,所以不等式组的解集为:-9<x≤-1,故答案为:-9<x≤-1.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题(共7小题,满分69分)18、(1)见解析;(1)1【解析】
(1)根据角平分线的作图可得;
(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【详解】(1)如图,射线CF即为所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=1.【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.19、1【解析】
直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.【详解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20、(1)证明见解析;(2);(3);【解析】
(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;(2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设DH=x,则DE=2x,所以然后求出x即可得到DE的长.【详解】(1)证明:连接OA、AD,如图,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD为直径,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO为等边三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直径为;(3)解:作EH⊥AD于H,如图,∵点B等分半圆CD,∴∠BAC=45°,∴∠DAE=45°,设DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.21、(1)AD=DE;(2)AD=DE,证明见解析;(3).【解析】试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.试题解析:(10分)(1)AD=DE.(2)AD=DE.证明:如图2,过点D作DF//AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3).考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.22、(3)证明见试题解析;(3)3.【解析】试题分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直线FG是⊙O的切线.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2试题解析:(3)如图3,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线;(3)如图3,∵AB=AC=30,AB是⊙O的直径,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.23、(1),;(2)或.【解析】
(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度展会现场医疗服务与安全保障协议2篇
- 多媒体技术与应用知到智慧树章节测试课后答案2024年秋浙江农林大学
- 2024食堂餐饮业务承接协议范本版B版
- 农村社区服务中心建设合同协议书
- 商业舞蹈馆建设合同
- 商铺租赁合同模板:创业基地
- 保险公司内勤聘用合同
- 国际旅游服务合同管理办法
- 2024版环保型编织袋买卖协议范本一
- 广播电视公司租赁合同
- 安全生产法律法规清单(2024年5月版)
- 江苏省连云港市2023-2024学年八年级下学期期末道德与法治试卷(含答案解析)
- 2024年大学试题(宗教学)-佛教文化笔试考试历年高频考点试题摘选含答案
- 三年级下册语文必背古诗词
- 老年人谵妄中西医结合诊疗专家共识
- 团餐食品安全年度汇报
- 华西解剖学课件绪论和骨学总论
- 2024平安保险测评题库
- 膀胱癌诊断治疗指南
- 僵尸企业注销工作总结范文
- 人教版五年级上册数学脱式计算练习200题及答案
评论
0/150
提交评论