版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页2024年三角形内角和教学设计三角形内角和教学设计1
:
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
知识与技能
1.理解和掌握三角形的内角和是180度。
2.运用三角形的内角和的知识解决实际问题。
过程与方法
经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观
在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。
重点:理解和掌握三角形的内角和是180度。
突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。
用三角形的内角和解决实际问题。
突破方法:推理分析计算。运用推理,正确计算。
教法:质疑
引导,演示讲解。
学法:实践操作,小组合作。
:
多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。
一课时
一.创设情境,引入新课
师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?
生:三类,分别为锐角三角形,直角三角形,钝角三角形。
师:嗯,真好,那么对边的分类呢?
生:俩类,分别为等腰三角形,等边三角形。
师:老师想让同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)
师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。
生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。
师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?
生:想。
师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)
(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)
二.探究新知
师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。
生1:锐角三角形。
生2:直角三角形。
生3:钝角三角形。
师:嗯,我们在上个星期学习了三角形的`各部分名称,谁能帮我告诉下同学们,角在哪里呢?
生:里面的三个角,可以用角1,角2,角3来表示。
师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?
生:三角形的内角和是180度。
师:那么我们能不能一起用一些好的办法来验证一下呢?
生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。
师:还有其他的办法吗?
生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。
生3:我可以用折的方法,把三个角的度数折在一起。
师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。
(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)
三.总结任意三角形的内角和是180度并做适当练习。
四.板书设计
三角形的内角和
量一量锐角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
钝角三角形:120度+38度+22度=180度
拼一拼图形呈现
折一折图形呈现
三角形内角和教学设计2
教学目标:
1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。
2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。
3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。
教学重点:
知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。
教学难点:
经历操作活动,推理、归纳出三角形的内角和。
教学资源:
多煤体课件,各种三角形,三角板,量角器,剪刀。
教学活动:
一、创设情境,导入新课。
1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?
2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。
3.三角形中还隐藏着那些知识?三角形的三个内角的和是多少度?这节课我们研究三角形的内角和。(板书课题:三角形的内角和)
二、合件交流,操作发现。
1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。
2.组织学生小组合作:
请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?
3.组织学生汇报交流:
①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的'内角和大约都是180度。③你能提出什么猜想?(我猜三角形的内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)
4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。
5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)
三、实践应用,拓展延伸。
1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。
2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。
四、反思总结,自我建构。
这节课你有什么收获?
这节课我们就研究到这儿,同学们再见!
三角形内角和教学设计3
教学目标:
1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。
3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。
教学难点:
通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。"
教师准备:
4组学具、课件
学生准备:
量角器、练习本
教学过程:
一、兴趣导入,揭示课题
1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"
(生出示三角形并汇报各类三角形及特点)
2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
3、我们来帮帮它们好吗?
4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。
你能标出三角形的三个角吗?(生快速标好)
数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1)
"同学们,用什么方法能知道三角形的内角和?"
二、猜想验证,探究规律(动手操作,探究新知)
1.量角求和法证明:
先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?
(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。
(2)指名汇报各组度量和计算内角和的结果。
(3)观察:从大家量、算的结果中,你发现什么?
归纳:大家算出的三角形内角和都等于或接近180°。
(5)思考、讨论:
通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?
大家讨论讨论。
现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?
看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。
看老师最终把三个角拼成了一个什么角?平角。是多少角?
"180°是一个什么角?想一想,怎样可以把三角形的`三个内角拼在一起?如果拼成一个180度的平角就可以验证这个结论,对吗?"(课件3)
现在,我们可验证三角形的内角和是(180度)?
2、那么对任意三角形都是这个结论?请看大屏幕。
演示锐角三角形折角。(三个顶点重合后是一个平角,折好后是一个长方形。)
你们想不想去试一试。
1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)
2、"你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)
a、验证直角三角形的内角和
折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?
引导生归纳出:直角三角形的内角和是180°
折法2我们还可以得出什么结论?
引导生归纳出:直角三角形中两个锐角的和是90°。
(即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)
b、验证锐角、钝角三角形的内角和。
归纳:锐角、钝角三角形的内角和也是180°。
放手发动学生独立完成,逐一种类汇报师给予鼓励
三、总结规律
刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?
(三角形的内角和是180°。)
(教师板书:三角形的内角和是180°学生齐读一遍。)
为什么用测量计算的方法不能得到统一的结果呢?
(量的不准。有的量角器有误差。)
老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应
四、应用新知,知识升华。
(让学生体验成功的喜悦)
现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?
(课件5……)
在一个三角形中,有没有可能有两个钝角呢?
(不可能。)
追问:为什么?
(因为两个锐角和已经超过了180°。)
有两个直角的一个三角形
(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)
问:那有没有可能有两个锐角呢?
(有,在一个三角形中最少有两个内角是锐角。)
1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、做一做:
在一个三角形中,∠1=140度,∠3=35度,求∠2的度数、
3、27页第3题(数学信息较为隐藏和生活中的实际问题)
4.思考题、
五、总结
今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。
板书设计:
三角形内角和
量一量拼一拼折一折
三角形内角和是180°
三角形内角和教学设计4
教学目标:
1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
3、经历三角形内角和的研究方法,感受数学研究方法。
教学重点:
1、探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
教学难点:
掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:
表格、课件。
学具准备:
各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。
生1:大三角形大(个子大)
生2:小三角形大(有钝角)
(教师不做判断,让学生带着问题进入新课)
2、什么是三角形的内角和?(板书:内角和)
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:
1、你认为谁说得对?你是怎么想的?
2、你有什么办法可以比较一下这两个三角形的`内角和呢?
生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。
生3:用折一折的办法把三个角折到一起看它们能不能组成平角
(二)探索与发现
活动一:量一量
(1)①了解活动要求:(屏幕显示)
A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)
B、把测量结果记录在表格中,并计算三角形内角和。
C、讨论:从刚才的测量和计算结果中,你发现了什么?
(引导生回顾活动要求)
②小组合作。
③汇报交流。
你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?
(引导学生发现每个三角形的三个内角和都在180°,左右。)
(2)提出猜想
刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)
活动二:拼一拼,验证猜想
这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)
引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?
(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。
(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
(3)分组汇报,讨论质疑
(4)课件演示,验证结果
活动三:折一折
师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。
(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。
讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?
提问:还有没有其它的方法?
3、回顾两种方法,归纳总结,得出结论。
(1)引导学生得出结论。
孩子们,三角形内角和到底等于多少度呢?”
学生答:“180°!”
(2)总结方法,齐读结论
我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)
(3)解释测量误差
为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?
那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°
(三)回顾问题:
现在你知道这两个三角形谁说得对了吗?(都不对!)
为什么?请大家一起,自信肯定的告诉我。
生:因为三角形内角和等于1800180°。(齐读)
三、巩固深化,加深理解。
1、试一试:数学书28页第3题
∠A=180°-90°-30°
2、练一练:数学书29页第一题(生独立解决)
∠A=180°-75°-28°
3、小法官:数学书29页第二题
四、回顾课堂,渗透数学方法。
1、总结:猜想—验证—归纳—应用的数学方法。
2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。
3、课堂延伸活动:探索——多边形内角和
板书设计:
三角形内角和等于180°
三角形内角和教学设计5
教学内容:人教版小学数学第八册第85页例5及”做一做”
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想
3、在探索中体验发现的乐趣,增强学好数学的信心、
教学重点
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点:
验证所有三角形的内角之和都是180°
教具准备:多媒体课件。
学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)
教学过程:
一、设疑引思
1、分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的'度数、
2、每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、
3、设问:老师为什么能很快”猜”出第三个角的度数呢?
三角形还有许多奥妙,等待我们去探索、
二、探索交流,获取新知
1、量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、
2、折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度,初步验证”三角形的内角和是180°”的结论、
3、拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论、
4、师利用课件演示将一个三角形的三个角拼成一个平角的过程、
5、验证:FLASH演示三种三角形割补过程
发现1:通过把直角三角形割补后,内角∠2,∠3组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于()度。
发现2:通过把钝角、锐角三角形割补后,三角组成了一个()角,而()角等于()度。所以锐角三角形和钝角三角形的内角和都是180度。
6、小结:刚才能过量一量折一折拼一拼,你发现了什么?
生说,师板书:三角形的内角和———180°
三、应用练习,拓展提高
1、书例5后”做一做”
思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)
2、下面哪三个角会在同一个三角形中。
(1)30、60、45、90
(2)52、46、54、80
(3)61、38、44、98
3、走向生活:
(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?
(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)
四作业:作业本
五全课总结
总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?
板书设计:三角形的内角和
三角形的内角和———180°
三角形内角和教学设计6
一、教材分析
(一)教材的地位和作用《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。“三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
(二)教学目标
基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:
1、知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。
2、数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。
3、解决问题:会用三角形内角和解决一些实际问题。
4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。
(三)重难点的确立:
1、重点:“三角形的内角和等于180°”结论的探究与应用。
2、难点:三角形的内角和定理的证明方法(添加辅助线)的讨论
二、学情分析
处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
基于以上的情况,我确立了本节课的教法和学法:
三、教法、学法
(一)教法
基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境—建立模型—解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。
(二)学法
通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
四、教学过程
我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。
具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的.拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。
前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。
通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。
活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。
活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。
活动6的设计目的发挥学生主体意识,培养学生语言概括能力。
1、《数学课程标准》指出:“本学段(7~9年级)的数学应结合具体的数学内容,采用?问题情境——建立模型——解释、应用与拓展?的模式展开,让学生经历知识的形成与应用的过程……”因此,在本节课的教学中,我不断的创造自主探究与合作交流的学习环境,让学生有充分的时间和空间去动手操作,去观察分析,去得出结论,并体验成功,共享成功、
2、体现自主学习、合作交流的新课程理念、无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用、
3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。
三角形内角和教学设计7
教学目标:
1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。
2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。
3、能运用三角形内角和知识解决一些简单的问题。
教学重点:
探索和发现“三角形内角和是180°”。
教学难点:
验证“三角形内角和是180°,以及对这一知识的灵活运用。”
教具准备:
三角形,多媒体课中。
教学过程设计:
一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?
二、探究新知:
(一)、量一量:四人一小组,分别测量本组准备的三角形的.内角,并求出和。
你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°
(二)、拼一拼
引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?
引导学生得出:三角形内角和等于180°
(三)折一折
引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。
回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。
三、巩固拓展
1、填一填
①直角形三角形的两个锐角和是()度。
②直角三角形的一个锐角是45°,另一个锐角是()度。
③钝角三角形的两上内角分别是20°,60°;则第三个角是()
2、火眼金晴
①钝角三角形的两个钝角和大于90°()。
②直角三角形的两个锐角之和正好等于90°()。
③淘气画了一个三个角分别是50°,70°,50°的三角形()
④两个锐角是60°的三角形是等边三角形()
⑤长方形的内角和等于360°()。
3、猜一猜:四边形的内角和是多少度?
五边形的内角和是多少度?
四、小结,今天学习了什么?你有什么收获?
三角形内角和教学设计8
新课标重视让学生经历数学知识的构成过程,要求教师创设有效的问题情境激发学生的参与欲望,带给足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的构成过程。这样,学生不仅仅能够掌握知识,而且能够积累探究数学问题的活动经验,发展空间观念和推理潜力。
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习了十六的第1、2、3题。
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习了多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学资料时,不但重视体现知识的构成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学带给了清晰的思路。概念的构成没有直接给出结论,而是透过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
1、在学习了本课时,学生已经有了探索三角形内角和的知识基础:明白直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,明白他们的四个角都是直角;认识了三角形,明白了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经明白了等腰三角形和正三角形。
2、已经有一部分学生明白了三角形内角和是180°,只是知其然而不知所以然。
1、透过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作潜力,积累基本的数学活动经验,发展空间观念和推理潜力。
3、在参与数学学习了活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
验证“三角形的内角和是180°”。
多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
一、复习了旧知引出课题
1、你已经明白有关三角形的哪些知识?
2、出示课题:三角形的内角和
二、提出问题引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:
(1)三角形的内角指的是哪些角?
(2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎样猜的?
三、操作验证构成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设:
①量算法
②剪拼法
③折拼法等
(2)三角形的个数有无数个,验证哪些三角形能够代表所有的'三角形?我们的操作过程怎样分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才透过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在必须的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。
6、构成结论:任意三角形的内角和是180°。
四、应用结论解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
这天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:
用这天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测:三角形的内角和是180°?
验证:量拼
结论:任意三角形的内角和是180°
三角形内角和教学设计9
知识与技能
1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度餐饮加盟合同:知名餐饮品牌与加盟商之间的合同
- 2024年度电脑绣花机交易合同样本2篇
- 二零二四年度商业合作合同
- 二零二四年度设备租赁与操作培训服务合同
- 2024年度旅游产品研发与推广合同
- 二零二四年度农业种植合同:农产品种植与收购协议
- 二零二四年电气产品代理销售区域合同2篇
- 2024年度地面土建施工合同复杂性研究7篇
- 健康咨询承揽合同三篇
- 二零二四年铲车长期租赁合同
- 酒店电梯的设置及选择运行要点管理
- 浓密机电气部分说明书
- 职能部门安全培训PPT精选文档
- 汉字应用水平测试国家卷
- 联盟企业现状调查问卷
- 渗透汽化膜-有机溶剂与水分离
- 2022年《父母课堂》如何帮助孩子顺利度过小学分化年级教学案例
- 幕墙拆除施工方案-(2)
- 8安全记心上 (3)
- 青春期人际交往
- 职工环保教育培训档案最新版本
评论
0/150
提交评论