湖南省邵阳市新宁县靖位乡联校高三数学理期末试题含解析_第1页
湖南省邵阳市新宁县靖位乡联校高三数学理期末试题含解析_第2页
湖南省邵阳市新宁县靖位乡联校高三数学理期末试题含解析_第3页
湖南省邵阳市新宁县靖位乡联校高三数学理期末试题含解析_第4页
湖南省邵阳市新宁县靖位乡联校高三数学理期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳市新宁县靖位乡联校高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量,且,则的最小值为

A.

B.

C.1

D.参考答案:D略2.已知复数z满足为虚数单位),则复数所对应的点所在象限为 (

)A.第一象限

B.第二象限

C.

第三象限

D.第四象限参考答案:A略3.若非零向量,满足,则与的夹角为(

)A.30°

B.60°

C.120°

D.150°参考答案:C4.两个函数的图象经过平移后能够重合,称这两个函数为“同形”函数,给出四个函数:,则“同形”函数是A.与

B.与C.与

D.与参考答案:A因为,所以,沿着轴先向右平移两个单位得到的图象,然后再沿着轴向上平移1个单位可得到,根据“同形”的定义可知选A.5.如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若,则等于(

)A. B.C. D.参考答案:A【分析】利用平面向量的线性运算,将用和表示,可得出和的值,由此可计算出的值.【详解】为的中点,且为的中点,所以,,,,.因此,,故选:A.【点睛】本题考查利用基底表示向量,要充分利用平面向量的加减法法则,考查运算求解能力,属于中等题.6.(4)

(04年全国卷III文)等比数列中,

,则的前4项和为(

)A.

81

B.

120

C.

D.

192参考答案:答案:B7.已知三点在球心为的球面上,,,球心到平面的距离为,则球的表面积为_________.【题文】如图,在中,,是边上一点,,则=_________.参考答案:8.若k∈R,则“k>3”是“方程﹣=1表示双曲线”的(

) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件参考答案:A考点:双曲线的标准方程.专题:压轴题.分析:根据双曲线定义可知,要使方程表示双曲线k﹣3和k+3同号,进而求得k的范围即可判断是什么条件.解答: 解:依题意:“方程﹣=1表示双曲线”可知(k﹣3)(k+3)>0,求得k>3或k<﹣3,则“k>3”是“方程﹣=1表示双曲线”的充分不必要条件.故选A.点评:本题主要考查了双曲线的标准方程.解题时要注意讨论焦点在x轴和y轴两种情况.9.设双曲线的中心为点,若有且只有一对相交于点、所成的角为的直线和,使,其中、和、分别是这对直线与双曲线的交点,则该双曲线的离心率的取值范围是A.

B.

C.

D.参考答案:A略10.曲线,(为参数)的对称中心()A.在直线上 B.在直线上C.在直线上 D.在直线上参考答案:B试题分析:参数方程所表示的曲线为圆心在,半径为1的圆,其对称中心为,逐个代入选项可知,点满足,故选B.考点:圆的参数方程,圆的对称性,点与直线的位置关系,容易题.二、填空题:本大题共7小题,每小题4分,共28分11.将一颗骰子先后投掷两次分别得到点数,则直线与圆有公共点的概率为_______.参考答案:依题意,将一颗骰子先后投掷两次得到的点数所形成的数组有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线与圆有公共点,即,的数组有(1,1),(1,2),(1,3),(1,4),……,(6,6),共种,因此所求的概率等于.12.抛物线的焦点坐标为_______.参考答案:13.已知,,,。根据以上等式,可猜想出的一般结论是

;参考答案:,14.不等式的解集为

。参考答案:(2,3]略15.已知函数,那么=

.参考答案:【考点】函数的值.【专题】计算题;压轴题.【分析】根据所求关系式的形式可先求f(),然后求出f(x)+f()为定值,最后即可求出所求.【解答】解:∵,∴f()=∴f(x)+f()=1∴f(2)+f()=1,f(3)+f()=1,f(4)+f()=1,f(1)=∴=故答案为:【点评】本题主要考查了函数的值的求解,找出规律进行解题可简化计算,当项数较少时也可逐一进行求解,属于基础题.16.抛物线的焦点坐标为

参考答案:略17.已知双曲线C:(a>0,b>0)的左焦点为F,过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|,O为坐标原点,则该双曲线的离心率为_____.参考答案:【分析】利用已知条件求出|AF|=c,|A|=c,利用双曲线定义求解即可.【详解】过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|=c,令右焦点为E,可知焦点三角形AFE为直角三角形,∴∠AOx=60°,且|AF|=c,|A|=c由双曲线的定义可得|AF|﹣|A|=2,∴,即e.故答案为:.【点睛】本题考查双曲线的定义和性质,主要是离心率的求法,考查运算能力,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,,,其中,且.⑴当时,求函数的最大值;⑵求函数的单调区间;⑶设函数若对任意给定的非零实数,存在非零实数(),使得成立,求实数的取值范围.

参考答案:解⑴

(2),()∴当时,,∴函数的增区间为,当时,,当时,,函数是减函数;当时,,函数是增函数。综上得,当时,的增区间为;

当时,增区间,减区间

⑶当,在上是减函数,此时的取值集合;当时,,若时,在上是增函数,此时的取值集合;若时,在上是减函数,此时的取值集合。对任意给定的非零实数,①当时,∵在上是减函数,则在上不存在实数(),使得,则,要在上存在非零实数(),使得成立,必定有,∴;②当时,在时是单调函数,则,要在上存在非零实数(),使得成立,必定有,∴。综上得,实数的取值范围为。

略19.(本题满分12分)已知:在直角坐标系中,曲线C的参数方程为:为参数),以原点O为极点,轴的正半轴为极轴建立极坐标系.求曲线C的极坐标方程.参考答案:由,得,两式相除,得代入得,20.已知△ABC的面积为S,且?=S.(Ⅰ)求tan2B的值;(Ⅱ)若cosA=,且|﹣|=2,求BC边中线AD的长.参考答案:【考点】平面向量数量积的运算.【分析】(Ⅰ)根据△ABC的面积,结合平面向量的数量积求出tanB的值,再求tan2B的值;(Ⅱ)根据tanB的值,求出sinB、cosB,再由cosA的值求出sinA,从而求出sinC=sinB,判断△ABC是等腰三角形,求出底边上的中线AD的长.【解答】解:(Ⅰ)△ABC的面积为S,且?=S;∴accosB=acsinB,解得tanB=2;∴tan2B==﹣;(Ⅱ)∵|﹣|=2,∴||=2,又tanB==2,sin2B+cos2B=1∴sinB=,cosB=;又cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB=;∵sinB=sinC,∴B=C,∴AB=AC=2,∴中线AD也是BC边上的高,∴AD=ABsinB=2×=.21.已知函数f(x)=lnx﹣(1+a)x2﹣x.(1)讨论函数f(x)的单调性;(2)当a<1时,证明:对任意的x∈(0,+∞),有f(x)<﹣﹣(1+a)x2﹣a+1.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;函数思想;转化思想;分析法;导数的综合应用.【分析】(1)求出原函数的导函数,对a分类求解原函数的单调区间;(2)利用分析法证明,把要证的不等式转化为证明成立,即证.令g(x)=,h(x)=x﹣lnx,由导数求出g(x)的最大值和h(x)的最小值,由g(x)的最大值小于h(x)的最小值得答案.【解答】(1)解:由f(x)=lnx﹣(1+a)x2﹣x,得f′(x)=(x>0),当a=﹣1时,f′(x)=,当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当时,﹣2(1+a)>0,﹣2(1+a)x2﹣x+1≥0,即f′(x)>0,f(x)在(0,+∞)上为增函数;当时,﹣2(1+a)>0,二次方程﹣2(1+a)x2﹣x+1=0有两根,,当x∈(0,x1),x∈(x2,+∞)时,f′(x)>0,f(x)为增函数,当x∈(x1,x2)时,f′(x)<0,f(x)为减函数;当a>﹣1时,﹣2(1+a)<0,二次方程﹣2(1+a)x2﹣x+1=0有两根,,,当x∈(0,x2)时,f′(x)>0,f(x)为增函数,当x∈(x2,+∞)时,f′(x)<0,f(x)为减函数.(2)证明:要证f(x)<﹣﹣(1+a)x2﹣a+1,即证lnx﹣(1+a)x2﹣x<﹣﹣(1+a)x2﹣a+1,即,∵a<1,∴1﹣a>0,也就是证,即证.令g(x)=,则g′(x)=,当x∈(0,e)时,g′(x)>0,g(x)为增函数,当x∈(e,+∞)时,g′(x)<0,g(x)为减函数,∴;令h(x)=x﹣lnx,h′(x)=1﹣,当x∈(0,1)时,h′(x)<0,h(x)为减函数,当x∈(1,+∞)时,h′(x)>0,h(x)为增函数,∴h(x)min=h(1)=1,∴成立,故对任意的x∈(0,+∞),有f(x)<﹣﹣(1+a)x2﹣a+1.【点评】本题考查利用导数研究函数的单调性,考查了利用导数求函数的最值,体现了分类讨论的数学思想方法,考查逻辑推理能力和运算能力,属难题.22.已知函数,其中m为大于零的常数(Ⅰ)讨论的单调区间;(Ⅱ)若存在两个极值点,,且不等式恒成立,求实数a的取值范围.参考答案:(Ⅰ)见解析;(Ⅱ).【分析】(Ⅰ)先求导数,再根据导函数零点情况分类讨论导函数符号,最后根据导函数符号确定函数单调区间;(Ⅱ)先根据参变分离法转化为求对应函数最值问题,再根据极值点条件化函数为一元函数,最后利用导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论