版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市重点名校2023-2024学年中考二模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为()A.8×107 B.880×108 C.8.8×109 D.8.8×10102.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q3.下列各数中比﹣1小的数是()A.﹣2 B.﹣1 C.0 D.14.已知地球上海洋面积约为361000000km2,361000000这个数用科学记数法可表示为()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1095.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是().A. B. C. D.6.下列各式计算正确的是()A. B. C. D.7.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±28.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C. D.9.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种 B.2种 C.3种 D.4种10.下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a611.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×10512.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3 B.2 C.5 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.14.关于x的方程kx2﹣(2k+1)x+k+2=0有实数根,则k的取值范围是_____.15.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=_____.16.若一元二次方程有两个不相等的实数根,则k的取值范围是.17.因式分解:3x3﹣12x=_____.18.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.20.(6分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?21.(6分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.22.(8分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.23.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.(1)求反比例函数和一次函数的解析式;(2)请连结,并求出的面积;(3)直接写出当时,的解集.24.(10分)计算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷225.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)26.(12分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.27.(12分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;(3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】880亿=88000000000=8.8×1010,
故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
∴原点在点M与N之间,
∴这四个数中绝对值最大的数对应的点是点Q.
故选D.3、A【解析】
根据两个负数比较大小,绝对值大的负数反而小,可得答案.【详解】解:A、﹣2<﹣1,故A正确;B、﹣1=﹣1,故B错误;C、0>﹣1,故C错误;D、1>﹣1,故D错误;故选:A.【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.4、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361000000用科学记数法表示为3.61×1.故选C.5、D【解析】
根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对,故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.6、B【解析】A选项中,∵不是同类二次根式,不能合并,∴本选项错误;B选项中,∵,∴本选项正确;C选项中,∵,而不是等于,∴本选项错误;D选项中,∵,∴本选项错误;故选B.7、C【解析】由题意可知:,解得:x=2,故选C.8、D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.9、B【解析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.故选B.【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.10、D【解析】
根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】∵3a﹣2a=a,∴选项A不正确;∵a2+a5≠a7,∴选项B不正确;∵(ab)3=a3b3,∴选项C不正确;∵a2•a4=a6,∴选项D正确.故选D.【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.11、A【解析】分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:1230000这个数用科学记数法可以表示为故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.12、B【解析】
以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【详解】如图所示:MK=.故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(20,4)(10086,0)【解析】
首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【详解】解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).故答案为(20,4)、(10086,0).【点睛】本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.14、k≤.【解析】
分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.【详解】当k=1时,原方程为-x+2=1,解得:x=2,∴k=1符合题意;当k≠1时,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.综上:k的取值范围是k≤.故答案为:k≤.【点睛】本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键.15、【解析】
根据直角三角形的中点性质结合勾股定理解答即可.【详解】解:,点F是AD的中点,.故答案为:.【点睛】此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.16、:k<1.【解析】
∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.17、3x(x+2)(x﹣2)【解析】
先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(x﹣y)2;2.【解析】
首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2028,y=2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.20、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】
(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.21、(1)见解析;(2)DF=【解析】
(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案.【详解】(1)如图(1)所示:△ABE,即为所求;(2)如图(2)所示:△CDF即为所求,DF=.【点睛】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.22、(1)CH=AB.;(2)成立,证明见解析;(3)【解析】
(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.【详解】解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=EC,∴点F是AD的中点,∴AF=FD,∴EC=AF,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.考点:四边形综合题.23、(1),;(2)4;(3).【解析】
(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
(2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
(3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.【详解】解:(1)如图,连接,,∵⊙C与轴,轴相切于点D,,且半径为,,,∴四边形是正方形,,,点,把点代入反比例函数中,解得:,∴反比例函数解析式为:,∵点在反比例函数上,把代入中,可得,,把点和分别代入一次函数中,得出:,解得:,∴一次函数的表达式为:;(2)如图,连接,,点的横坐标为,的面积为:;(3)由,根据图象可知:当时,的解集为:.【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.24、【解析】
按照实数的运算顺序进行运算即可.【详解】解:原式【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.25、AC=6.0km,AB=1.7km;【解析】
在Rt△AOC,由∠的正切值和OC的长求出OA,在Rt△BOC,由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。【详解】由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的长为6.0km,AB的长为1.7km.【点睛】本题主要考查三角函数的知识。26、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】
(1)利用列举法,列举所有的可能情况即可;
(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:,,,,,,,,共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,(小黄赢);红心牌点数是黑桃牌点数的整倍数有4种可能,∴在规划2中,(小黄赢).∵,∴小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.27、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.(Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.(Ⅲ)直线AB与y轴交于点F,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 刑事辩护律师聘请合同样本
- 瑜伽教练合作合同范本
- 国防科技教师招聘合同
- 大坝工程承包施工专用合同
- 展览会锌钢栏杆安全施工合同
- 冷库租赁合同:化妆品低温储存
- 2025年度新型环保材料房屋买卖合同范本3篇
- 生产工人劳动合同管理办法
- 通信线路工程合同
- 2025年度清算合同标的及服务内容详细描述3篇
- 房地产估计第八章成本法练习题参考
- 2023年广东罗浮山旅游集团有限公司招聘笔试题库及答案解析
- 《社会主义核心价值观》优秀课件
- DB11-T1835-2021 给水排水管道工程施工技术规程高清最新版
- 《妊娠期糖尿病患者个案护理体会(论文)3500字》
- 解剖篇2-1内脏系统消化呼吸生理学
- 《小学生错别字原因及对策研究(论文)》
- 便携式气体检测报警仪管理制度
- 酒店安全的管理制度
- (大洁王)化学品安全技术说明书
- 2022年科学道德与学术规范知识竞赛决赛题库(含答案)
评论
0/150
提交评论