peskin量子场论课后答案(芝加哥大学版)_第1页
peskin量子场论课后答案(芝加哥大学版)_第2页
peskin量子场论课后答案(芝加哥大学版)_第3页
peskin量子场论课后答案(芝加哥大学版)_第4页
peskin量子场论课后答案(芝加哥大学版)_第5页
已阅读5页,还剩129页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1

Physics443Homework#1

DueThursday,October7,2010

1.)Peskin&Schroeder,problem2.1

2.)Peskin&Schroeder,problem2.2

3.)Peskin&Schroeder,problem2.3

4.)Theclassicallimitofaharmonicoscillatorcanbedescribedintermsofcoherentstates

|a)=exp[aat]|0).

Whenaislarge,theoscillatorstateissemiclassical.ProceedingsimilarlyfortheFouriermodesofthequantumKlein-Gordonfield,

(a)Evaluatetheexpectationvalueofthefieldoperator

(f|φ(x)|f),

andshowthatitsatisfiestheKlein-Gordonequation.

(b)Evaluatetherelativemeansquarefluctuationoftheoccupationnumberofthemodewithmomentump,andtherelativemeansquarefluctuationinthetotalenergy

Iseitheroftheseagoodmeasureofthedegreetowhichthefieldisclassical?Justifyyour

answer.

(c)Take△(x-y)=(0|φ(x)φ(y)|0)(equaltimes)asameasureofthefuctuationsorcorrelationsofthefieldamplitude.Useyourresultforproblem2.3(P&S)toevaluatethisquantity.Whatisthemeaningofthedivergenceasx→y?

1

QFT1:ProblemSet1

1.)Peskin&Schroeder2.1

Webeginwiththeactionfortheclassicalelectromagneticfield:

whereF=0A,-0,Aμ

(a)

homogeneousMaxwellequations

ToderivethehomogeneousMaxwellequationsweformthePoincaredualoftheFaraday

tensor.

Gaβ=eaBμF

GisdivergencelessfromthedefinitionofF:

O₀Gaβ=eBμ↓O₀δA,=0

Fromtheexpressionsforthefields(E,B)intermsofthepotentialsA⁰=(重,A)“:

B=▽×A

Wefind(usingLatinlettersforspatialindicesandGreekforspacetimeindices):

Ei=-0⁰A¹+QA⁰=Fi⁰

Thus.0₀GaO=0,Gi⁰=0;Bi=0

OaGa=O₀G+0;ei⁰kFok=-O₀B¹-eijk0;EK=0

Or,

▽·B=0

inhomogeneousMaxwellequations

WebeginwiththeEuler-Lagrangeequation:

Now:

Thus.

and

0。FaO=0;FiO=0;Ei=0

0Fai=O₀F⁰i-0;eii⁰kGo=-O₀E¹+eijk0;B^=0

Or,

▽·E=0

2

(b)

WederivetheNoethercurrentassociatedwithaninfinitesimaltranslationx→x+a.Using

theequationsofmotion:

FromδL=a*0aC

Or,

andδA,=a*0aA,wefindOaT⁴g=0where:

Notethatthistensorisnotsymmetric.Itisalsoneithergaugeinvariantnortraceless.Toremedytheseproblemsweconstruct:

“g=T⁴g+θ(F>Ag)

Usingtheequationsofmotion:

Or,

Wecomputetheenergyandmomentumdensitiesintermsofthefields.Now,

FFM=2F₀;F⁰j+F;;Fii

Fromabove:

F⁰j=-Foj=-E)andFii=Fi;=-eij⁰kGok=-EijkB^

UsingeoijkOijg=286q,wehave:

Weconsider,

Or,

Also,

Or,

FF”=-2(E²-B²)

S¹=0i=FiFK²nk=Eeii⁰kGo=iEiB

S

=E×B

3

alternatederivation

Wemayalsoderivethesymmetric,tracelessandgaugeinvariantenergy-momentumtensorfromtheactiononacurvedspacetime.Theactionis:

where

√σ=√|det[gw]

Herethematrixofthecomponentsofatensorinaparticularcoordinatesystemisrepre-sentedbybraces.Forexample

[gw]-¹=[g'”]

Tocomputetheenergy-momentumtensorwevarytheactionwithrespecttothemetric

withthedefinition:

Where,

Now:

det[g]=exp[tr(ln[gμn])]

Thus.

det[9ow+δg]=det[g]]det(1+[gvw][og

≈det[g](1+tr(fgow)-[ōgw1))

Since,r(lw)-¹[ōgl)=g*δg=-9óg!"

Wefind:

Thisleadsto:

Thuswehave:

Taβ=FaFβg¹”+49agFF

Thisclearlyreducestotheaboveresult(derivedviaNoethers'theorem)whenrestrictedtoflatspacetime.

4

2.)Peskin&Schroeder2.2:Thecomplexscalarfield

Webeginwiththeactionforthecomplexscalarfield:

(a)

WecomputetheHamiltoniandensityassociatedwiththisaction:

H=πφ+πφd*-C

Where,

and

Thussince.

C=φ*φ-7p*·Vφ-m²φ*φ

Wefind:

H=π*π+▽φ*·Vφ+m²φ*φ

Wenowimposethecanonicalcommutationrelations:

[φ(x,t),π(y,t)]=i8³(x-y)

Allothercommutators(excepttheonegivenbyhermitianconjugation)vanish.WeusetheseandtheHeisenbergequationsofmotiontoverifythatφ=π*:

Wenowconsider方=*:

Integratingbypartswefind:

六(x)=▽·▽φ*(x)-m²φ

ThusosatisfiestheKlein-Gordonequation:

φ=π*=V²φ-m²φor0Q“φ+m²φ=0

5

(b)

Byanalogywiththerealscalarfieldwepostulatethefollowingformforφ(x):

Thus,

AgainbyanalogywiththecaseoftherealKlein-Gordonfieldwepostulate:

and

Weassumeallothercommutatorsvanishandverifytheserelationsbycomputing

=i8³(x-y)

WenowshowthatHisdiagonalwhenwrittenintermsofthesecreationandannihilationoperators.Webeginwith:

WeconsidereachofthetermsthatmakeupHinturn.SinceHisaNoethercharge,wemayevaluateitatt=0)withoutlossofgenerality:

Now:

Thus.

6

..

Also.

:

Combiningterms,takingp→-pforcrosstermsandusing

Thus.

Finally,wenormalordertoremovetheinfiniteenergyoftheso-calledDiracsea.

(c)

WenowexpresstheU(1)Noetherchargeintermsofcreationandannihilationoperators:

Againthechargeisconservedsowemayevaluateitatt=0

Since(πφ)+=φtπt:

Thus.

Uponnormalordering,weseethatthe(a,b)particleshavecharge

7

(d)

WeconsidertheLagrangian:

Wewillfirstconsiderthegeneralcasea=1...NandthentakeN=2.WerewritetheLagrangianintermsofanNdimensionalcomplexvectorφanditshermitianconjugateφt

C=0φ²ə¹φ-m²φtφ

ThisisinvariantunderaglobalU(N)transformation:

φ→UφwhereU¹U=1

WemaydecomposeanyU(N)transformationintoaU(1)andanSU(N)transformation.GivenU∈U(N)suchthatdetU=eipwemayformM=e-iq/NU∈SU(N).Thuswemayconsidertheseinvariancesseparately.ForU(1)weconsiderφ→φ(a)=e-ia/2φ.SincetheLagrangianitself,ratherthanmerelytheaction,isinvariantundertheU(1),we

havetheconservedcurrent:

Now,

and

Thus.

J“=-言(a“φφ-φtaφ)

And,

Herewehave:

ForSU(N)weexpresseachelementofthegroup(hereweworkinthevectorrepresentationanditscomplexconjugate)intermsoftheexponentiationofelementsoftheLiealgebrasu(N).ThatisifM∈SU(N)thenitcanbeexpressedasM=e-ia'g'wheregj∈su(N)andai∈R.ThussinceUtU=1wehave(g))=giandsince,

weseethatgiistraceless.ThuswearelookingforasetoflinearlyindependenttracelesshermitianmatricesinNdimensions.Thedimensionalityofthisspaceis(N²-1).

Note:ThetrueunderlyinginvarianceofthelagrangianisO(2N)notU(N).Therearethus

actuallyN(2N-1),notN²,symmetrygenerators.

ForSU(N)wehavethecommutationrelations:

[g³,g^]=ifiklg'

Weusetheconventionalnormalizations:

andfimnfkmn=N8ik

8

Weconsiderthesymmetryφ→φ(a)=e-ia'g'φ.Thisleadstotheconservedcurrents:

Now,

and

Thus,(J^)“=-i(O⁴φg^φ-φg^a*φ)

And.

WenowshowthatthechargessatisfythesamecommutationrelationsintheiractionontheHilbertspaceasthegeneratorsoftheLiealgebrasatisfyonCN.Asabove,sincethechargesareconserved,wemayevaluatethefieldsthatgointotheirconstructionatanytime.Wewillthereforesuppresstimelabelsonthefieldsinwhatfollows.WefirstrewritethechargeswithexplicitCNindices.

Wenowevaluatethecommutator:

+[πm(x)(g²)aφb(×),πe(y)(g⁴)aa(y)])

Now.

([φ(x)(g³)π+(x),φ*(y)(g⁴)π¹(y)])=-([π(x)(g³)φ(x),π(y)(g^)φ(y)])t

Thusweonlyneedtoevaluate:

[πa(x)(gì)。φo(x),π₀(y)(g^)a(y)]

=(gì)。(g^)c(πa(x)[φn(x),π₀(y)]φa(y)+πc(y)[π₀(x),φa(y)]φ(x))

Using;

[φa(x),πp(y)]=iôabδ³(x-y)

Wefind:

[πa(x)(gì)。φo(x),πc(y)(g^)a(y)]=iô³(x-y)(π(x)[g³,g^]φ(y))

Thus.

ForthecaseofSU(2)wemakethereplacements

and

fikl=cikl

WhereoJarethePaulimatricesandeiklisthecompletelyanti-symmetrictensorin3dimensions(e¹23=1)

9

3.)Peskin&Schroeder2.3

Weevaluatethefunction

forspacelike(x-y),suchthat(x-y)²=-r²,explicitlyintermsofBesselfunctions.

SinceD(x)isinvariantunderLorentztransformations,D(x)=D(Ax)(A∈SO(3,1)),wemaychoosex⁰=y°.Thus,denotingx-y=r,

Wherewehaveintroducedaspericalcoordinatesystem(p,θ,φ)suchthatp·r=prcos0.

Thus.

From.

Definingu=p/m,

FromthepropertiesofKi(x),wefindthatfor(x,y)spacelikeseparated:

asx→y

ThefollowingisaplotofK₁(a)/xinredand1/x²inblue:

10

4.)

WeconsidercoherentstatesfortherealKlein-Gordonfield:

|0)

Where,

(a)

Weevaluatetheexpectationvalueofthefieldoperator:

(f|φ(x)|f)

Where,

Since,φ_(x)=φ+(x)weneedonlyevaluate:

(f|φ+(x)|f)=|Nfl²(0|e-ir⁴φ+(x)eiT|0)

Where,

Thus,

Wenowshowthat|f)isnormalisedsothat:

(f|f)=|Nyl²(0|e-ir¹eiT|0)=1

Now,if[A,B]∈Cthen:

eAeB=eA+B+÷[A,B]=eβeAe[A,B]

Also,

Thus,

Now;

Thus,

r+|o)=0

and

[ap,T]=f(p)

since

11

Thisleadsto:

Thustheexpectationvalueofthefieldoperatoris:

TheexpectationvaluetriviallysatisfiestheKlein-Gordonequationsincethefieldoperatorsatisfiesitand|f)isaHeisenbergstatevector.

(b)

Weevaluatetheexpectationvalueofthenumberdensityoperatorinmomentumspaceforthecoherentstate|f)

Also.

Fromthecommutationrelationsweseethatthisisadivergentquantity.

(f|npnp|f)=|f(p)|²(f(p)l²+(2π)³s²(O))

Thus

Thisdivergencearisessincenpisanoperator-valueddistributionandmustbeintegratedbeforeawell-definedproductwithanotheroperatorvalueddistributionmaybetaken.

WenowevaluatetheexpectationvalueoftheHamiltonianforthecoherentstate|f)

Also,

NoW.

(0|e-it*apake²T|0)=|Ny|-²(f(p)f(k)+(2π)³δ³(p-k),

Thus.

12

Finally,

(c)

Aswefoundabove,for(x,y)spacelikeseparated:

as

x→y

Here,asabove,(x-y)²=-r².Again,asfornpabove,thisdivergencearisessinceφ(x)isanoperator-valueddistribution.Thisisalsoasignthatlocalquantitiesthatarequadraticinφ(x),suchastheenergy-momentumtensor,donothavewelldefinedvaluesandmustberenormalized.Notethatthedivergenceisindependentofthemassoftheparticle.Thisisanindicationthatallparticlesbehaveasmasslessparticlesatsufficientlyhighenergies(shortdistances).

Physics443Homework#2

DueThursday,October14,2010

1.)Considerthepathintegralforasinglepointparticle,withtheaction

Thisrepresentsthequantizationofthecoordinatesandmomentaoftheparticle,subjecttothemassshellconstraintp²=m²(togetherwiththeieprescription)imposedbytheLagrangemultiplierN.Thisactionadmitsthereparametrizationsymmetryδx=ap,δp=0,δN=-Oawherea(t)isanyfunction.ThissymmetryallowsustofixthegaugeconditionN(t)=T;theconstantTmuststillbeintegratedover,however.

a)Pathintegrateoverx(t),subjecttotheboundaryconditionsx/'(0)=x",x/(1)=y",yieldingadeltafunction8(p)alongthepath.Solvethisconstraint(findthesetoffunctionsthatsolveit)andpathintegrateoverthosep(t)tofindthequantummechanicalpropagationamplitude

wheredisthenumberofspacetimedimensions.

b)UsethisintegralrepresentationtoshowthatDrsatisfies

(ə²+m²)Dp=i8⁴)(x-y).

c)EvaluatetheTintegralintermsofBesselfunctions.

2.)PeskinandSchroeder9.2a-c

Hints:For9.2a,itissufficienttoformulatethepartitionfunctionintermsofapathintegral;youaregoingtoevaluateitinpart(b).For9.2c,firstshowthatthepartitionfunctioncanbeformulatedasapathintegraloverfieldsinEuclidean4-spacethatareperiodicintheimaginarytimedirection.Thespatialfieldmodesareharmonicoscillators;takethelogofthepartitionfunctiontogetthefreeenergyasasumovermodesofthefreeenergyofeachoscillator,anduseyourresultfor(b)toevaluateit.

Asecondapproachto(c)usesthemethodsofproblem(1).Usetherepresentation

log[Z]=log[det(-0b+m²)]=trlog(-0s+m²)

togetherwiththerepresentationofthematrixelementderivedinproblem(1),toevaluatethefunctionaldeterminantandhencethepartitionfunction.Youmaywanttotake0/dmoftheaboveexpressiontoremoveanm-independentdivergenceandrendertheintegralfinite.

3.)WriteafieldtheoryactiondescribingnonrelativisticscalarparticlesinteractingviaapotentialU(x-y)(thisaction-at-a-distanceformofinteractionispermissibleinanonrelativisticsetting,butnotinrelativisticfieldtheory,whereitwouldbreakLorentzinvariancebyselectingapreferredsurfaceofsimultaneity).FindthecorrespondingHamiltonianforthefield.UseyourexpressionfortheenergyintermsoffieldsandevaluateittoshowthattheexpectationvalueoftheHamiltonianinthenoninteractinggroundstateofasystemofNparticlesinavolumeVis,tofirstorderinperturbationtheory,

where

Useof'firstquantized'methodstoderivethisanswerisnotacceptable(thepointoftheexerciseistogainfamiliaritywithquantizedfields;youmayfindituseful,however,tocomparethetwoapproaches).

1

QFT1:ProblemSet2

1.)

Webeginbyattemptingtomotivatetheactionforarelativisticpointparticleappearinginthehomeworkset.Perhapsthemorefamiliaractionisthatgivenbytheinvariantlengthof

theworldline:

Where

i!=0sx¹=0x/0s.

InadditiontobeingPoincareinvariant,thisactionisinvariantunderarbitraryreparameter-izationsoftheworldlinecoordinates.Thecoordinatesx!ofcoursetransformlikescalars

underthistransformation.Theequationofmotionforx(s)isthefamiliar:

Wenowintroduceanewactionwhichincorporatesafieldwhichtransformslikeametricunderreparameterizationsoftheworldlinecoordinates.Wewillseethatitleadstothesameequationsofmotionforx(s).

Wheredsx·Osx=ii"andg⁵⁸gss=1.Theequationofmotionforgisfoundtobe:

9ss=0sx·0₉a

Thus,iftheequationsofmotionaresatisfied,gcoincideswiththemetricalongtheworldlineinherited(throughitsimbeddinginspacetime)fromη.Fromthiswefind:

S₂[x,O₈π·θ₅x]=S₁[x]

ThustheactionS₂leadstothesameclassicalequationsofmotionforxasdoesSi.Wenowmakeachangeoffieldvariablesbytakingadvantageofthefactthat,inonedimension,wemayreplacethemetricbyaone-form.ThuswechooseN=√9ss/m.Thisleadstothe

action:

Fromthisactionwe

derivetheHamiltonian:

Herepμ=aC/aiμ=-N-li,andthecanonicalWemaydefinethepathintegralassociated

momentumofthe

withSʒasfollows:

Nvariablevanishes.

Perhapsmorefundamentally,wemayconsiderthepathintegraltobedefinedthroughthe

useofthefollowingaction:

2

Wewritethepathintegralas

ThismaybeseentogivethesameresultasthepathintegralinvolvingSʒsincetheactionS₄isquadraticinp.NotethatwedonotintegrateoverthecanonicalmomentumforNsinceitisidenticallyzero.Toensurethatthispathintegralconvergeswesubstitutem²→(m²-ie)andconstrainthepathintegraltopositivevaluesofN.

Inthediscussionofgaugefixingwearegoingtodivergeabitfromthestatementoftheproblem.TheproblempresentsasymmetryundercanonicaltransformationsinducedbytheHamiltonianwhereNistreatedasaLagrangeMultiplierforafirst-classconstraint.Thesymmetryisδx=ap,δp=0,δN=-0saforarbitrarya(s).Iammorecomfortablediscussingfixingthesymmetryoftheactionunderdiffeomorphisms;thatisreparameteriza-tionsofthetimeparameters.ThissymmetrytreatsxandpasscalarsandNasaone-formsothatδx=-β0₉x,δp=-β0₉p,8N=-0s(BN)forarbitraryβ(s).Istronglysuspectthatthesymmetriesareequivalentandcertainlyleadtothesameresult.ThissymmetryallowsustotransformNsubjecttotheconditionthatfdsN(s)ispreservedasitmustbeunderdiffeomorphisms.ThefinitetransformationofNisjustthetensortransformationlaw:

WemayusethisfreedomtotransformanyN(s)toN(S)=1.Thenwehave:

Wemaynowdoafurthertransformationtosetthelimitsoftheintegraltoso=0andS₁=1withN(s)=T.WecannotgaugeawayNentirelyandTmustbeintegratedoverinthepathintegral.TheprincipalreasonforavoidingthetranformationinthehomeworkisthatIamnotsurewhattheanalogoftheʃdsN(s)constraintis.Wearethusleadtothefollowinggaugefixedpathintegral:

(a)

Wewillrespecttheapparenttime-honoredtraditionintheoreticalphysicsoftreatingthesolutionofthepathintegralsomewhatloosely.Butfirstwepresentanexpressionthatmaybeworkedwithtoprovideaperhapsmorecarefulsolution(here△=1/n):

Wetreatthexpathintegral,followinganintegrationbypartsintheaction,asafunctional

Fouriertransform:

3

Insertingordinary

thisinto

integral

thepathintegralweblithelyconvertthepfunctionalintegralintoansincep=0:

Notethattheintegraloversintheactionproducesitsintegrandsincep=0.Alsonotethatafactorλahasbeeninsertedtoprovidethenormalizationtobedeterminedbelow.Wenowusethefollowingformulafortheintegralofagaussian:

Settinga=-iT/2anda=(x-y)wefind:

(b)

WenowshowthatDrisaGreenfunctionfortheKlein-Gordonequation.Wefindthat:

(a²+m²-ie)Dr(x)

xexp(-i/2[T(m²-ie)+T-1x²])

Toseethatthedistributiongivenhereisadeltafunctionwemayintegrateitagainstatestfunction.WewillfindthattheintegraloscillateswildlyintheT→0limitexceptnearx=0.Weremovethetestfunction(evaluatedatx=0)andthedistributionintegratesto1sinceitisanormalizedgaussianforallT.Thisisofcourseprettylooselanguagebutisessentiallycorrect.Toverifythisresultwereturntothe(normalized)expressionforDppriortoperformingthemomentumintegral.ToconformwiththedefinitioninPeskinandSchroederwechoosethenormalizationλa=1/2andtakep→-pintheintegral:

WeperformtheTintegraltofind;

Thus.

(d²+m²-ie)Dr(x)=-i8⁴(x)

4

(c)

ThemoststraightforwardwaytoapproachthisproblemistouseatableofintegralsorplugtheexpressionforDpasanintegraloverTintoaprogramlikemathematica.Theresultis:

Thefollowingaregraphsofx(1-d/2)Ka/z-1(x)(spacelike)ingreenandtherealandimagi-

narypartsof(-ir)(1-d/2)Ka/z-1(-ix)(timelike)inblueandredrespectively.

For

d=2:

Ford=3:

Ford=4:

5

2.)Peskin&Schroeder9.2(a-c)

(a)

Wewanttoexpressthequantumstatisticalpartitionfunctionintermsintegral.Fornotationalclaritywewillconsideraone-dimensionalsinglesystem.Theextensiontoamorecomplicatedsystemistrivial.Insertingapositioneigenstateswehave:

ofafunctionalparticlequantumcompletesetof

Ratherthanevaluatingthepropagatorforcomplextimeandfacingrelativelydelicateissuesrelatedtoanalyticcontinuation,wederivethepathintegraldirectly.Defininge=β/Nandinsertingcompletesetsofpositionandmomentumeigenstates,wehave:

Now.

Thus,usingthedefinitionofthephasespacepathintegralappearinginP&S,wemaywritethepartitionfunctionas:

WhereweareusingthehybridEuclideanLagrangian:

m(q₃á,p)=-ipà+H(p,q)

Notethatthepathintegralisoverallperiodicpathsthathaveperiodβ.IfH(p,q)canbewrittenasH=p²/2m+V(q),wemayevaluatethepintegralsexplicitly:

Thus.

6

Again,usingthedefinitionoftheconfigurationspacepathintegralappearinginP&S,we

maywritethepartitionfunctionas:

WhereweareusingtheEuclideanLagrangian:

ThemeasureintheconfigurationspacepathintegraliswrittenasDqtoreflecttheaddi-

tionalfactorsinthemeasurethatdonotappearinthephasespacepathintegral.

(b)

WeconsidertheEuclideanactionfortheunitmassharmonicoscillator:

Sinceweareconsideringapathintegraloverperiodicfunctions,weexpandx(t)inaFourierSeries;

and

Therealityofx(t)imposes.Wewillproceedinacavaliermannerandsimplydefinethepathintegralmeasuretobe:

Wherexn=an+ibn.Notethatboisabsentduetotherealitycondition.Wewillpaydearlybelowforthischoiceofmeasureintheformofinfiniteβ-dependentprefactors.Itispossibletoavoidtheseinfinitiesthroughamorecarefuldefinitionofthediscreteformofthepathintegral(seeItzyksonandZuber9-1).WewillproceedasP&Sintendsandneglectthedivergentpieces.WefirstcomputetheactionintermsoftheFouriermodes.

Now,

And,

7

Thus.

Thisleadsto:

Or,

Wemaywritethisas:

Neglectingthew-independentfactorinbacketsandusingtheproductrepresentationforsinhappearinginP&Swefind:

Z(B)=(2sinh(βw/2))-1

Youareinvitedtofeeltroubledbythisderivation.

(c)

Weformulatethepartitionfunctionforarealscalarfieldbyfirstconsideringthefollowing

matrixelement.

U(φa,φo|-iγ)=〈φb|e-~H|φa)

WeareworkingintheSchroedingerpicturewithHamiltonian:

Ratherthantreatingtheproblemofrealandimaginarytimeseparately,withtimeortemper-atureasacontinuousparameterinthepathintegral,itismorestraightforwardtointroduceacontinuousparameterwhichindexestheinsertionofaninfinitenumberofcompletesetsofstates.Defininge=1/Nandinsertingcompletesetsoffieldandmomentumeigenstates:

Wherewehaveintroducedthefunctionaldeltafunction:

Fromthecanonicalcommutationrelations:

8

Thus.

WenowintroduceacontinuousparameterowhichindexesthecompletesetofstatesanddefineahybridLagrangian:

E,[ó,φ,π]=F[π,]+iγH[π,where

Thisleadstothepathintegralformofthematrixelement:

Substitutingγ=itandφ(o)→φ(ot)andchangingvariablestos=otwefind:

Where,

E(ó,Vφ,φ,π)=πb-H(π,▽φ,φ)where

Thepartitionfunctionisdefinedas:

Substitutingγ=βandφ(o)→φ(oβ)andchangingvariablestos=σβwefind

Where,

EE(ó,Vo,φ,π)=-iπó+H(π,Vo,φ)where

WenowtakeadvantageofthefactthattheHamiltonianisquadraticinπandintegrateoutthemomentumvariables.Wewritethepathintegralas:

Performingthegaussianintegralandabsorbingγdependenttermsintothemeasure:

9

Substitutingγ=itandφ(o)→φ(ot)andchangingvariablestos=otwefind:

Where,

where

Substitutingγ=βandφ(o)→φ(oβ)andchangingvariablestos=oβwefind:

Where

where

Integratingbypartswehave:

Or,

z(3)=(det(-0g+m²))-1/

Wewillcomputethispathintegralinamanneranalogoustothatusedforthepartitionfunctionfortheharmonicoscillator.WeintroduceperiodicboundaryconditionsonR³andFourierdecomposeφ(x,s)(V=L³):

Sinceφisreal,ifwedefineφ(n,n)=A(n,n)+iB(n,n),wefind

A(n,n)=A(-n,-n)andB(n,n)=-B(-n,-n)

Thisallowsustodefinethefunctionalmeasureas:

Withsomealgebrawefind:

Defining

10

Wehave:

Defining;

Wefind:

Thus,

Droppingwn-independentfactorsasinpart(b)above,wemaywritethisas:

Werewritethisas:

Droppingthefirstterm,whichamountstothenormalorderingprescription,andwriting

thesumasanintegraloverkwefind:

Asfortheharmonicoscillator,thisderivationismuchsimplerusingoperatormethods.PleaseseeItzyksonandZuber3-1-5.ThefollowingisaplotoflnZ(β)/(Vm³)asafunctionofßmobtainedthroughnumericalintegration.

11

3.)

Webeginwit

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论