




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
Physics443Homework#1
DueThursday,October7,2010
1.)Peskin&Schroeder,problem2.1
2.)Peskin&Schroeder,problem2.2
3.)Peskin&Schroeder,problem2.3
4.)Theclassicallimitofaharmonicoscillatorcanbedescribedintermsofcoherentstates
|a)=exp[aat]|0).
Whenaislarge,theoscillatorstateissemiclassical.ProceedingsimilarlyfortheFouriermodesofthequantumKlein-Gordonfield,
(a)Evaluatetheexpectationvalueofthefieldoperator
(f|φ(x)|f),
andshowthatitsatisfiestheKlein-Gordonequation.
(b)Evaluatetherelativemeansquarefluctuationoftheoccupationnumberofthemodewithmomentump,andtherelativemeansquarefluctuationinthetotalenergy
Iseitheroftheseagoodmeasureofthedegreetowhichthefieldisclassical?Justifyyour
answer.
(c)Take△(x-y)=(0|φ(x)φ(y)|0)(equaltimes)asameasureofthefuctuationsorcorrelationsofthefieldamplitude.Useyourresultforproblem2.3(P&S)toevaluatethisquantity.Whatisthemeaningofthedivergenceasx→y?
1
QFT1:ProblemSet1
1.)Peskin&Schroeder2.1
Webeginwiththeactionfortheclassicalelectromagneticfield:
whereF=0A,-0,Aμ
(a)
homogeneousMaxwellequations
ToderivethehomogeneousMaxwellequationsweformthePoincaredualoftheFaraday
tensor.
Gaβ=eaBμF
GisdivergencelessfromthedefinitionofF:
O₀Gaβ=eBμ↓O₀δA,=0
Fromtheexpressionsforthefields(E,B)intermsofthepotentialsA⁰=(重,A)“:
B=▽×A
Wefind(usingLatinlettersforspatialindicesandGreekforspacetimeindices):
Ei=-0⁰A¹+QA⁰=Fi⁰
Thus.0₀GaO=0,Gi⁰=0;Bi=0
OaGa=O₀G+0;ei⁰kFok=-O₀B¹-eijk0;EK=0
Or,
▽·B=0
inhomogeneousMaxwellequations
WebeginwiththeEuler-Lagrangeequation:
Now:
Thus.
and
0。FaO=0;FiO=0;Ei=0
0Fai=O₀F⁰i-0;eii⁰kGo=-O₀E¹+eijk0;B^=0
Or,
▽·E=0
2
(b)
WederivetheNoethercurrentassociatedwithaninfinitesimaltranslationx→x+a.Using
theequationsofmotion:
FromδL=a*0aC
Or,
andδA,=a*0aA,wefindOaT⁴g=0where:
Notethatthistensorisnotsymmetric.Itisalsoneithergaugeinvariantnortraceless.Toremedytheseproblemsweconstruct:
“g=T⁴g+θ(F>Ag)
Usingtheequationsofmotion:
Or,
Wecomputetheenergyandmomentumdensitiesintermsofthefields.Now,
FFM=2F₀;F⁰j+F;;Fii
Fromabove:
F⁰j=-Foj=-E)andFii=Fi;=-eij⁰kGok=-EijkB^
UsingeoijkOijg=286q,wehave:
Weconsider,
Or,
Also,
Or,
FF”=-2(E²-B²)
S¹=0i=FiFK²nk=Eeii⁰kGo=iEiB
S
=E×B
3
alternatederivation
Wemayalsoderivethesymmetric,tracelessandgaugeinvariantenergy-momentumtensorfromtheactiononacurvedspacetime.Theactionis:
where
√σ=√|det[gw]
Herethematrixofthecomponentsofatensorinaparticularcoordinatesystemisrepre-sentedbybraces.Forexample
[gw]-¹=[g'”]
Tocomputetheenergy-momentumtensorwevarytheactionwithrespecttothemetric
withthedefinition:
Where,
Now:
det[g]=exp[tr(ln[gμn])]
Thus.
det[9ow+δg]=det[g]]det(1+[gvw][og
≈det[g](1+tr(fgow)-[ōgw1))
Since,r(lw)-¹[ōgl)=g*δg=-9óg!"
Wefind:
Thisleadsto:
Thuswehave:
Taβ=FaFβg¹”+49agFF
Thisclearlyreducestotheaboveresult(derivedviaNoethers'theorem)whenrestrictedtoflatspacetime.
4
2.)Peskin&Schroeder2.2:Thecomplexscalarfield
Webeginwiththeactionforthecomplexscalarfield:
(a)
WecomputetheHamiltoniandensityassociatedwiththisaction:
H=πφ+πφd*-C
Where,
and
Thussince.
C=φ*φ-7p*·Vφ-m²φ*φ
Wefind:
H=π*π+▽φ*·Vφ+m²φ*φ
Wenowimposethecanonicalcommutationrelations:
[φ(x,t),π(y,t)]=i8³(x-y)
Allothercommutators(excepttheonegivenbyhermitianconjugation)vanish.WeusetheseandtheHeisenbergequationsofmotiontoverifythatφ=π*:
Wenowconsider方=*:
Integratingbypartswefind:
六(x)=▽·▽φ*(x)-m²φ
ThusosatisfiestheKlein-Gordonequation:
φ=π*=V²φ-m²φor0Q“φ+m²φ=0
5
(b)
Byanalogywiththerealscalarfieldwepostulatethefollowingformforφ(x):
Thus,
AgainbyanalogywiththecaseoftherealKlein-Gordonfieldwepostulate:
and
Weassumeallothercommutatorsvanishandverifytheserelationsbycomputing
=i8³(x-y)
WenowshowthatHisdiagonalwhenwrittenintermsofthesecreationandannihilationoperators.Webeginwith:
WeconsidereachofthetermsthatmakeupHinturn.SinceHisaNoethercharge,wemayevaluateitatt=0)withoutlossofgenerality:
Now:
Thus.
6
..
Also.
:
Combiningterms,takingp→-pforcrosstermsandusing
Thus.
Finally,wenormalordertoremovetheinfiniteenergyoftheso-calledDiracsea.
(c)
WenowexpresstheU(1)Noetherchargeintermsofcreationandannihilationoperators:
Againthechargeisconservedsowemayevaluateitatt=0
Since(πφ)+=φtπt:
Thus.
Uponnormalordering,weseethatthe(a,b)particleshavecharge
7
(d)
WeconsidertheLagrangian:
Wewillfirstconsiderthegeneralcasea=1...NandthentakeN=2.WerewritetheLagrangianintermsofanNdimensionalcomplexvectorφanditshermitianconjugateφt
C=0φ²ə¹φ-m²φtφ
ThisisinvariantunderaglobalU(N)transformation:
φ→UφwhereU¹U=1
WemaydecomposeanyU(N)transformationintoaU(1)andanSU(N)transformation.GivenU∈U(N)suchthatdetU=eipwemayformM=e-iq/NU∈SU(N).Thuswemayconsidertheseinvariancesseparately.ForU(1)weconsiderφ→φ(a)=e-ia/2φ.SincetheLagrangianitself,ratherthanmerelytheaction,isinvariantundertheU(1),we
havetheconservedcurrent:
Now,
and
Thus.
J“=-言(a“φφ-φtaφ)
And,
Herewehave:
ForSU(N)weexpresseachelementofthegroup(hereweworkinthevectorrepresentationanditscomplexconjugate)intermsoftheexponentiationofelementsoftheLiealgebrasu(N).ThatisifM∈SU(N)thenitcanbeexpressedasM=e-ia'g'wheregj∈su(N)andai∈R.ThussinceUtU=1wehave(g))=giandsince,
weseethatgiistraceless.ThuswearelookingforasetoflinearlyindependenttracelesshermitianmatricesinNdimensions.Thedimensionalityofthisspaceis(N²-1).
Note:ThetrueunderlyinginvarianceofthelagrangianisO(2N)notU(N).Therearethus
actuallyN(2N-1),notN²,symmetrygenerators.
ForSU(N)wehavethecommutationrelations:
[g³,g^]=ifiklg'
Weusetheconventionalnormalizations:
andfimnfkmn=N8ik
8
Weconsiderthesymmetryφ→φ(a)=e-ia'g'φ.Thisleadstotheconservedcurrents:
Now,
and
Thus,(J^)“=-i(O⁴φg^φ-φg^a*φ)
And.
WenowshowthatthechargessatisfythesamecommutationrelationsintheiractionontheHilbertspaceasthegeneratorsoftheLiealgebrasatisfyonCN.Asabove,sincethechargesareconserved,wemayevaluatethefieldsthatgointotheirconstructionatanytime.Wewillthereforesuppresstimelabelsonthefieldsinwhatfollows.WefirstrewritethechargeswithexplicitCNindices.
Wenowevaluatethecommutator:
+[πm(x)(g²)aφb(×),πe(y)(g⁴)aa(y)])
Now.
([φ(x)(g³)π+(x),φ*(y)(g⁴)π¹(y)])=-([π(x)(g³)φ(x),π(y)(g^)φ(y)])t
Thusweonlyneedtoevaluate:
[πa(x)(gì)。φo(x),π₀(y)(g^)a(y)]
=(gì)。(g^)c(πa(x)[φn(x),π₀(y)]φa(y)+πc(y)[π₀(x),φa(y)]φ(x))
Using;
[φa(x),πp(y)]=iôabδ³(x-y)
Wefind:
[πa(x)(gì)。φo(x),πc(y)(g^)a(y)]=iô³(x-y)(π(x)[g³,g^]φ(y))
Thus.
ForthecaseofSU(2)wemakethereplacements
and
fikl=cikl
WhereoJarethePaulimatricesandeiklisthecompletelyanti-symmetrictensorin3dimensions(e¹23=1)
9
3.)Peskin&Schroeder2.3
Weevaluatethefunction
forspacelike(x-y),suchthat(x-y)²=-r²,explicitlyintermsofBesselfunctions.
SinceD(x)isinvariantunderLorentztransformations,D(x)=D(Ax)(A∈SO(3,1)),wemaychoosex⁰=y°.Thus,denotingx-y=r,
Wherewehaveintroducedaspericalcoordinatesystem(p,θ,φ)suchthatp·r=prcos0.
Thus.
From.
Definingu=p/m,
FromthepropertiesofKi(x),wefindthatfor(x,y)spacelikeseparated:
asx→y
ThefollowingisaplotofK₁(a)/xinredand1/x²inblue:
10
4.)
WeconsidercoherentstatesfortherealKlein-Gordonfield:
|0)
Where,
(a)
Weevaluatetheexpectationvalueofthefieldoperator:
(f|φ(x)|f)
Where,
Since,φ_(x)=φ+(x)weneedonlyevaluate:
(f|φ+(x)|f)=|Nfl²(0|e-ir⁴φ+(x)eiT|0)
Where,
Thus,
Wenowshowthat|f)isnormalisedsothat:
(f|f)=|Nyl²(0|e-ir¹eiT|0)=1
Now,if[A,B]∈Cthen:
eAeB=eA+B+÷[A,B]=eβeAe[A,B]
Also,
Thus,
Now;
Thus,
r+|o)=0
and
[ap,T]=f(p)
since
11
Thisleadsto:
Thustheexpectationvalueofthefieldoperatoris:
TheexpectationvaluetriviallysatisfiestheKlein-Gordonequationsincethefieldoperatorsatisfiesitand|f)isaHeisenbergstatevector.
(b)
Weevaluatetheexpectationvalueofthenumberdensityoperatorinmomentumspaceforthecoherentstate|f)
Also.
Fromthecommutationrelationsweseethatthisisadivergentquantity.
(f|npnp|f)=|f(p)|²(f(p)l²+(2π)³s²(O))
Thus
Thisdivergencearisessincenpisanoperator-valueddistributionandmustbeintegratedbeforeawell-definedproductwithanotheroperatorvalueddistributionmaybetaken.
WenowevaluatetheexpectationvalueoftheHamiltonianforthecoherentstate|f)
Also,
NoW.
(0|e-it*apake²T|0)=|Ny|-²(f(p)f(k)+(2π)³δ³(p-k),
Thus.
12
Finally,
(c)
Aswefoundabove,for(x,y)spacelikeseparated:
as
x→y
Here,asabove,(x-y)²=-r².Again,asfornpabove,thisdivergencearisessinceφ(x)isanoperator-valueddistribution.Thisisalsoasignthatlocalquantitiesthatarequadraticinφ(x),suchastheenergy-momentumtensor,donothavewelldefinedvaluesandmustberenormalized.Notethatthedivergenceisindependentofthemassoftheparticle.Thisisanindicationthatallparticlesbehaveasmasslessparticlesatsufficientlyhighenergies(shortdistances).
Physics443Homework#2
DueThursday,October14,2010
1.)Considerthepathintegralforasinglepointparticle,withtheaction
Thisrepresentsthequantizationofthecoordinatesandmomentaoftheparticle,subjecttothemassshellconstraintp²=m²(togetherwiththeieprescription)imposedbytheLagrangemultiplierN.Thisactionadmitsthereparametrizationsymmetryδx=ap,δp=0,δN=-Oawherea(t)isanyfunction.ThissymmetryallowsustofixthegaugeconditionN(t)=T;theconstantTmuststillbeintegratedover,however.
a)Pathintegrateoverx(t),subjecttotheboundaryconditionsx/'(0)=x",x/(1)=y",yieldingadeltafunction8(p)alongthepath.Solvethisconstraint(findthesetoffunctionsthatsolveit)andpathintegrateoverthosep(t)tofindthequantummechanicalpropagationamplitude
wheredisthenumberofspacetimedimensions.
b)UsethisintegralrepresentationtoshowthatDrsatisfies
(ə²+m²)Dp=i8⁴)(x-y).
c)EvaluatetheTintegralintermsofBesselfunctions.
2.)PeskinandSchroeder9.2a-c
Hints:For9.2a,itissufficienttoformulatethepartitionfunctionintermsofapathintegral;youaregoingtoevaluateitinpart(b).For9.2c,firstshowthatthepartitionfunctioncanbeformulatedasapathintegraloverfieldsinEuclidean4-spacethatareperiodicintheimaginarytimedirection.Thespatialfieldmodesareharmonicoscillators;takethelogofthepartitionfunctiontogetthefreeenergyasasumovermodesofthefreeenergyofeachoscillator,anduseyourresultfor(b)toevaluateit.
Asecondapproachto(c)usesthemethodsofproblem(1).Usetherepresentation
log[Z]=log[det(-0b+m²)]=trlog(-0s+m²)
togetherwiththerepresentationofthematrixelementderivedinproblem(1),toevaluatethefunctionaldeterminantandhencethepartitionfunction.Youmaywanttotake0/dmoftheaboveexpressiontoremoveanm-independentdivergenceandrendertheintegralfinite.
3.)WriteafieldtheoryactiondescribingnonrelativisticscalarparticlesinteractingviaapotentialU(x-y)(thisaction-at-a-distanceformofinteractionispermissibleinanonrelativisticsetting,butnotinrelativisticfieldtheory,whereitwouldbreakLorentzinvariancebyselectingapreferredsurfaceofsimultaneity).FindthecorrespondingHamiltonianforthefield.UseyourexpressionfortheenergyintermsoffieldsandevaluateittoshowthattheexpectationvalueoftheHamiltonianinthenoninteractinggroundstateofasystemofNparticlesinavolumeVis,tofirstorderinperturbationtheory,
where
Useof'firstquantized'methodstoderivethisanswerisnotacceptable(thepointoftheexerciseistogainfamiliaritywithquantizedfields;youmayfindituseful,however,tocomparethetwoapproaches).
1
QFT1:ProblemSet2
1.)
Webeginbyattemptingtomotivatetheactionforarelativisticpointparticleappearinginthehomeworkset.Perhapsthemorefamiliaractionisthatgivenbytheinvariantlengthof
theworldline:
Where
i!=0sx¹=0x/0s.
InadditiontobeingPoincareinvariant,thisactionisinvariantunderarbitraryreparameter-izationsoftheworldlinecoordinates.Thecoordinatesx!ofcoursetransformlikescalars
underthistransformation.Theequationofmotionforx(s)isthefamiliar:
Wenowintroduceanewactionwhichincorporatesafieldwhichtransformslikeametricunderreparameterizationsoftheworldlinecoordinates.Wewillseethatitleadstothesameequationsofmotionforx(s).
Wheredsx·Osx=ii"andg⁵⁸gss=1.Theequationofmotionforgisfoundtobe:
9ss=0sx·0₉a
Thus,iftheequationsofmotionaresatisfied,gcoincideswiththemetricalongtheworldlineinherited(throughitsimbeddinginspacetime)fromη.Fromthiswefind:
S₂[x,O₈π·θ₅x]=S₁[x]
ThustheactionS₂leadstothesameclassicalequationsofmotionforxasdoesSi.Wenowmakeachangeoffieldvariablesbytakingadvantageofthefactthat,inonedimension,wemayreplacethemetricbyaone-form.ThuswechooseN=√9ss/m.Thisleadstothe
action:
Fromthisactionwe
derivetheHamiltonian:
Herepμ=aC/aiμ=-N-li,andthecanonicalWemaydefinethepathintegralassociated
momentumofthe
withSʒasfollows:
Nvariablevanishes.
Perhapsmorefundamentally,wemayconsiderthepathintegraltobedefinedthroughthe
useofthefollowingaction:
2
Wewritethepathintegralas
ThismaybeseentogivethesameresultasthepathintegralinvolvingSʒsincetheactionS₄isquadraticinp.NotethatwedonotintegrateoverthecanonicalmomentumforNsinceitisidenticallyzero.Toensurethatthispathintegralconvergeswesubstitutem²→(m²-ie)andconstrainthepathintegraltopositivevaluesofN.
Inthediscussionofgaugefixingwearegoingtodivergeabitfromthestatementoftheproblem.TheproblempresentsasymmetryundercanonicaltransformationsinducedbytheHamiltonianwhereNistreatedasaLagrangeMultiplierforafirst-classconstraint.Thesymmetryisδx=ap,δp=0,δN=-0saforarbitrarya(s).Iammorecomfortablediscussingfixingthesymmetryoftheactionunderdiffeomorphisms;thatisreparameteriza-tionsofthetimeparameters.ThissymmetrytreatsxandpasscalarsandNasaone-formsothatδx=-β0₉x,δp=-β0₉p,8N=-0s(BN)forarbitraryβ(s).Istronglysuspectthatthesymmetriesareequivalentandcertainlyleadtothesameresult.ThissymmetryallowsustotransformNsubjecttotheconditionthatfdsN(s)ispreservedasitmustbeunderdiffeomorphisms.ThefinitetransformationofNisjustthetensortransformationlaw:
WemayusethisfreedomtotransformanyN(s)toN(S)=1.Thenwehave:
Wemaynowdoafurthertransformationtosetthelimitsoftheintegraltoso=0andS₁=1withN(s)=T.WecannotgaugeawayNentirelyandTmustbeintegratedoverinthepathintegral.TheprincipalreasonforavoidingthetranformationinthehomeworkisthatIamnotsurewhattheanalogoftheʃdsN(s)constraintis.Wearethusleadtothefollowinggaugefixedpathintegral:
(a)
Wewillrespecttheapparenttime-honoredtraditionintheoreticalphysicsoftreatingthesolutionofthepathintegralsomewhatloosely.Butfirstwepresentanexpressionthatmaybeworkedwithtoprovideaperhapsmorecarefulsolution(here△=1/n):
Wetreatthexpathintegral,followinganintegrationbypartsintheaction,asafunctional
Fouriertransform:
3
Insertingordinary
thisinto
integral
thepathintegralweblithelyconvertthepfunctionalintegralintoansincep=0:
Notethattheintegraloversintheactionproducesitsintegrandsincep=0.Alsonotethatafactorλahasbeeninsertedtoprovidethenormalizationtobedeterminedbelow.Wenowusethefollowingformulafortheintegralofagaussian:
Settinga=-iT/2anda=(x-y)wefind:
(b)
WenowshowthatDrisaGreenfunctionfortheKlein-Gordonequation.Wefindthat:
(a²+m²-ie)Dr(x)
xexp(-i/2[T(m²-ie)+T-1x²])
Toseethatthedistributiongivenhereisadeltafunctionwemayintegrateitagainstatestfunction.WewillfindthattheintegraloscillateswildlyintheT→0limitexceptnearx=0.Weremovethetestfunction(evaluatedatx=0)andthedistributionintegratesto1sinceitisanormalizedgaussianforallT.Thisisofcourseprettylooselanguagebutisessentiallycorrect.Toverifythisresultwereturntothe(normalized)expressionforDppriortoperformingthemomentumintegral.ToconformwiththedefinitioninPeskinandSchroederwechoosethenormalizationλa=1/2andtakep→-pintheintegral:
WeperformtheTintegraltofind;
Thus.
(d²+m²-ie)Dr(x)=-i8⁴(x)
4
(c)
ThemoststraightforwardwaytoapproachthisproblemistouseatableofintegralsorplugtheexpressionforDpasanintegraloverTintoaprogramlikemathematica.Theresultis:
Thefollowingaregraphsofx(1-d/2)Ka/z-1(x)(spacelike)ingreenandtherealandimagi-
narypartsof(-ir)(1-d/2)Ka/z-1(-ix)(timelike)inblueandredrespectively.
For
d=2:
Ford=3:
Ford=4:
5
2.)Peskin&Schroeder9.2(a-c)
(a)
Wewanttoexpressthequantumstatisticalpartitionfunctionintermsintegral.Fornotationalclaritywewillconsideraone-dimensionalsinglesystem.Theextensiontoamorecomplicatedsystemistrivial.Insertingapositioneigenstateswehave:
ofafunctionalparticlequantumcompletesetof
Ratherthanevaluatingthepropagatorforcomplextimeandfacingrelativelydelicateissuesrelatedtoanalyticcontinuation,wederivethepathintegraldirectly.Defininge=β/Nandinsertingcompletesetsofpositionandmomentumeigenstates,wehave:
Now.
Thus,usingthedefinitionofthephasespacepathintegralappearinginP&S,wemaywritethepartitionfunctionas:
WhereweareusingthehybridEuclideanLagrangian:
m(q₃á,p)=-ipà+H(p,q)
Notethatthepathintegralisoverallperiodicpathsthathaveperiodβ.IfH(p,q)canbewrittenasH=p²/2m+V(q),wemayevaluatethepintegralsexplicitly:
Thus.
6
Again,usingthedefinitionoftheconfigurationspacepathintegralappearinginP&S,we
maywritethepartitionfunctionas:
WhereweareusingtheEuclideanLagrangian:
ThemeasureintheconfigurationspacepathintegraliswrittenasDqtoreflecttheaddi-
tionalfactorsinthemeasurethatdonotappearinthephasespacepathintegral.
(b)
WeconsidertheEuclideanactionfortheunitmassharmonicoscillator:
Sinceweareconsideringapathintegraloverperiodicfunctions,weexpandx(t)inaFourierSeries;
and
Therealityofx(t)imposes.Wewillproceedinacavaliermannerandsimplydefinethepathintegralmeasuretobe:
Wherexn=an+ibn.Notethatboisabsentduetotherealitycondition.Wewillpaydearlybelowforthischoiceofmeasureintheformofinfiniteβ-dependentprefactors.Itispossibletoavoidtheseinfinitiesthroughamorecarefuldefinitionofthediscreteformofthepathintegral(seeItzyksonandZuber9-1).WewillproceedasP&Sintendsandneglectthedivergentpieces.WefirstcomputetheactionintermsoftheFouriermodes.
Now,
And,
7
Thus.
Thisleadsto:
Or,
Wemaywritethisas:
Neglectingthew-independentfactorinbacketsandusingtheproductrepresentationforsinhappearinginP&Swefind:
Z(B)=(2sinh(βw/2))-1
Youareinvitedtofeeltroubledbythisderivation.
(c)
Weformulatethepartitionfunctionforarealscalarfieldbyfirstconsideringthefollowing
matrixelement.
U(φa,φo|-iγ)=〈φb|e-~H|φa)
WeareworkingintheSchroedingerpicturewithHamiltonian:
Ratherthantreatingtheproblemofrealandimaginarytimeseparately,withtimeortemper-atureasacontinuousparameterinthepathintegral,itismorestraightforwardtointroduceacontinuousparameterwhichindexestheinsertionofaninfinitenumberofcompletesetsofstates.Defininge=1/Nandinsertingcompletesetsoffieldandmomentumeigenstates:
Wherewehaveintroducedthefunctionaldeltafunction:
Fromthecanonicalcommutationrelations:
8
Thus.
WenowintroduceacontinuousparameterowhichindexesthecompletesetofstatesanddefineahybridLagrangian:
E,[ó,φ,π]=F[π,]+iγH[π,where
Thisleadstothepathintegralformofthematrixelement:
Substitutingγ=itandφ(o)→φ(ot)andchangingvariablestos=otwefind:
Where,
E(ó,Vφ,φ,π)=πb-H(π,▽φ,φ)where
Thepartitionfunctionisdefinedas:
Substitutingγ=βandφ(o)→φ(oβ)andchangingvariablestos=σβwefind
Where,
EE(ó,Vo,φ,π)=-iπó+H(π,Vo,φ)where
WenowtakeadvantageofthefactthattheHamiltonianisquadraticinπandintegrateoutthemomentumvariables.Wewritethepathintegralas:
Performingthegaussianintegralandabsorbingγdependenttermsintothemeasure:
9
Substitutingγ=itandφ(o)→φ(ot)andchangingvariablestos=otwefind:
Where,
where
Substitutingγ=βandφ(o)→φ(oβ)andchangingvariablestos=oβwefind:
Where
where
Integratingbypartswehave:
Or,
z(3)=(det(-0g+m²))-1/
Wewillcomputethispathintegralinamanneranalogoustothatusedforthepartitionfunctionfortheharmonicoscillator.WeintroduceperiodicboundaryconditionsonR³andFourierdecomposeφ(x,s)(V=L³):
Sinceφisreal,ifwedefineφ(n,n)=A(n,n)+iB(n,n),wefind
A(n,n)=A(-n,-n)andB(n,n)=-B(-n,-n)
Thisallowsustodefinethefunctionalmeasureas:
Withsomealgebrawefind:
Defining
10
Wehave:
Defining;
Wefind:
Thus,
Droppingwn-independentfactorsasinpart(b)above,wemaywritethisas:
Werewritethisas:
Droppingthefirstterm,whichamountstothenormalorderingprescription,andwriting
thesumasanintegraloverkwefind:
Asfortheharmonicoscillator,thisderivationismuchsimplerusingoperatormethods.PleaseseeItzyksonandZuber3-1-5.ThefollowingisaplotoflnZ(β)/(Vm³)asafunctionofßmobtainedthroughnumericalintegration.
11
3.)
Webeginwit
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国陶瓷纤维市场竞争格局与前景发展策略分析报告
- 2025-2030年中国造纸机械市场运行态势及投资战略研究报告
- 2025-2030年中国蚝肉行业发展状况及营销战略研究报告
- 2025-2030年中国矿渣粉产业十三五规划及发展策略分析报告
- 2025-2030年中国电子铜箔市场运行状况及发展趋势预测报告
- 江西洪州职业学院《经济学的思维方式》2023-2024学年第二学期期末试卷
- 沈阳职业技术学院《受众与视听率分析》2023-2024学年第二学期期末试卷
- 益阳职业技术学院《公共关系》2023-2024学年第二学期期末试卷
- 2025届上海市松江区届高三上学期一模考试历史试卷
- 辽宁中医药大学杏林学院《软件测试技术实验》2023-2024学年第二学期期末试卷
- 工余安健环管理制度
- 某学校食堂服务投标书
- 空调维保服务项目质量保障措施
- 《马克思主义与社会科学方法论》课后思考题答案全
- 急性心肌梗塞
- 八年级地理下期教学计划(星球地图版)
- 休闲农业与乡村旅游(课件)
- 蓝色科技风半导体产业PPT模板
- 院感手卫生培训课件
- 铸牢中华民族共同体意识学习PPT
- 多重耐药鲍曼不动杆菌治疗课件
评论
0/150
提交评论