版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年高考押题预测卷02【新九省卷】数学·参考答案第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。12345678DBACDDCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ACACAD第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。13.11 13. 14.四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。15.(本小题满分13分)【解】(1)由于的斜率为,所以,又,故,解得,(2)由(1)知,所以,故当时,单调递增,当时,单调递减,故当时,取最小值,要使恒成立,故,解得,故的取值范围为16.(本小题满分15分)【解】(1)由题知:各组频率分别为:0.15,0.25,0.3,0.2,0.1,日均阅读时间的平均数为:(分钟)(2)由题意,在[60,80),[80,100),[100,120]三组分别抽取3,2,1人的可能取值为:0,1,2则
所以的分布列为:01217.(本小题满分15分)【解】(1)连接交与点,连接,可得平面与平面的交线为,因为平面,平面,所以,又因为为的中点,所以点为的中点,取的中点,连接,可得且,又因为为的中点,可得且,所以且,所以四边形为平行四边形,所以,又因为平面,且平面,所以平面.(2)取的中点,连结,因为,可得,且,又因为,且,所以,所以,又因为,且平面,所以平面,以为坐标原点,建立如图所示的空间直角坐标系,可得,因为为的中点,为的中点,可得,则,设是平面的法向量,则,取,可得,所以,设是平面的法向量,则,取,可得,所以;设平面与平面的夹角为,则,即平面与平面的夹角的余弦值为.18.(本小题满分17分)【解】(1)①当直线l斜率不存在时,由椭圆的对称性,不妨设直线l在y轴右侧,直线OA的方程为,由,解得,,所以,,所以,直线AB的方程为,此时.同理,当直线l在y轴左侧时,.②当直线l斜率存在时,设直线l的方程为,,,由消去y整理得,,∴,且,,又∵,∴即:,所以,,则,故,所以满足,所以,.综上,,所以,点P的轨迹方程为.(2)①由(1)可知,当直线l斜率不存在或斜率为0时,.②当直线l斜率存在且不为0时,,∵,∴,当且仅当,即等号成立.∴,∴,∴,综上,.
19.(本小题满分17分)【解】(1),由题意可知;(2)解法一:①若,则为恒等置换;②若存在两个不同的,使得,不妨设,则.所以,即为恒等置换;③若存在唯一的,使得,不妨设,则或.当时,由(1)可知为恒等置换;同理可知,当时,也是恒等置换;④若对任意的,则情形一:或或;情形二:或或或或或;对于情形一:为恒等置换;对于情形二:为恒等置换;综上,对任意,存在,使得为恒等置换;解法二:对于任意,都有,所以中,至少有一个满足,即使得的的取值可能为.当分别取时,记使得的值分别为,只需取为的最小公倍数即可.所以对任意,存在,使得为恒等置换;(3)不妨设原始牌型从上到下依次编号为1到52,则洗牌一次相当于对作一次如下置换:,即其中.注意到各编号在置换中的如下变化:,,,,,,,,,所有编号在连续置换中只有三种循环:一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论