版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题18中点四大模型解题策略解题策略经典例题经典例题【例1】(2022·江苏·南通市通州区育才中学八年级阶段练习)已知,在△ABC中,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)如图1,求证:AD=CE;(2)如图2,点O为AB的中点,连接OD,OE.请判断△ODE的形状?并说明理由.【例2】(2022·重庆市合川中学九年级阶段练习)在△ABC中,∠ABC=45°,D为(1)如图1,当∠ADC=75°时,若AB=3+3,求AD(2)如图2,当AC=AD时,点P为AB的中点,且AB=2CD,求证:(3)如图3,在(2)的条件下,将△BCP绕点P旋转180°,得到△AC′P,连接D【例3】(2022·河南·嵩县教育局基础教育教学研究室一模)如图,Rt△ABC的中,∠BAC=90°,AB=4cm,AC=3cm,点G是边AB上一动点,以AG为直径的⊙O交CG于点D,E是边AC的中点,连接DE(1)求证:DE与⊙O相切;(2)填空:①当AG=___________cm时,⊙O与直线BC相切;②当点G在边AB上移动时,△CDE面积的最大值是___________cm2【例4】(2021·广西·南宁二中八年级期中)在平面直角坐标系中有一等腰三角形ABC,点A在y轴正半轴上,点B在x轴负半轴上.(1)如图1,点C在第一象限,若∠BAC=90°,A、B两点的坐标分别是A(0,4),B(−2,0),求C点的坐标;(2)如图2,点C在x正半轴上,点E、F分别是边BC、AB上的点,若∠AEF=∠ACB=2∠OAE.求证:BF=CE;(3)如图3,点C与点O重合时点E在第三象限,BE⊥AE,连接OE,求∠BEO的度数.培优训练培优训练一、解答题1.(2021·湖北武汉·九年级阶段练习)△ABC中,BC=4,AC=6,∠ACB=m°,将△ABC绕点A顺时针旋转n°得到△AEF,E与B是对应点,如图1.(1)延长BC、EF,交于点K,求证:∠BKE=n°;(2)当m=150,n=60时,求四边形CEFA的面积;(3)如图3.当n=150时,取BE的中点P和CF的中点Q,直接写出PQ2.(2022·四川·石室中学八年级期中)已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图1,若点P在线段AB上,且AC=6+2,PA=2(2)在(1)的条件下,猜想PA、PB、PQ三者之间的数量关系并证明;(3)如图2,若点P在AB的延长线上,求证:PA3.(2022·广东·惠州市惠阳区朝晖学校九年级阶段练习)阅读理解:如图,等腰直角△ABC中,∠ABC=90∘(1)如图①,过点C作CG⊥y轴于点G,若点C的横坐标为5,求点B的坐标.(2)如图②,将△ABC摆放至x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD⊥x轴于点D,求CD(3)如图③,若点A坐标为(−4,0),分别以OB,AB为直角边在第一、第二象限作等腰Rt△OBF与等腰Rt△ABE,连接EF交y轴于点P.当B点在y轴正半轴上移动时,PB的长度是否会发生改变?若改变,请说明理由,若不改变,请直接写出4.(2022·河北·八年级期中)如图,在△ABC中,已知AB=AC,∠ABC=∠ACB=45°,AH是△ABC的高,BC=10cm,射线CM⊥BC,动点D从点C开始沿射线CB的方向以每秒2厘米的速度运动,动点E也同时从点C开始在射线CM上以每秒1厘米的速度运动,连接AD、AE(1)请直接写出CD、CE的长度(用含有t的式子表示):CD=______cm,CE=______(2)当点D到点H的距离为2cm时,求t(3)请直接写出当t=103s时,△ABD5.(2022·江苏徐州·八年级期中)如图,△ABC中,∠ACB=90°,AC=BC,点D是斜边AB的中点,点E、F分别在边AC、BC上,且DE⊥DF,垂足为D.(1)如图1,当DE⊥AC时,DE、DF的大小关系是______;(2)如图2,将∠EDF绕点D点旋转,(1)中的关系还成立吗?请说明理由;(3)如图3,连接EF,试探究AE、BF、EF之间的数量关系,并证明你的结论.6.(2022·湖北·武汉市黄陂区教学研究室八年级期中)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当AD=CD时,过点C作CM⊥AD于点M,如果DM=2,求CD−BD的值.7.(2022·浙江·杭州市大关中学九年级期中)如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP,OP.(1)求证:点D为BC的中点;(2)求AP的长度.8.(2022·湖北黄石·九年级期中)如图,△ABC中,AB=AC,AH⊥BC于H,BD⊥AC于D,AH,BD相交于点O,以O为圆心、OD为半径的⊙O交BC于点E、F,已知AD=6,BD=8.(1)求证:AB是⊙O的切线;(2)求⊙O的半径;(3)求弦EF的长.9.(2022·江苏·泰州中学附属初中八年级阶段练习)按要求作图.(1)如图(1),在平行四边形ABCD中,AC为对角线,AC=BC,AE是△ABC的中线.①在AD取一点F使得EF∥②画出△ABC的高CH.(仅使用无刻度的直尺画图).(2)如图(2),四边形ABCD是平行四边形,在线段CD找一点E,使得BE平分∠AEC.(仅使用圆规画图)10.(2022·湖南长沙·九年级期中)如图,在△ABC中,AB=AC,以AC为直径的⊙O,与AB边相交于点D,与BC边相交于点E,过点E作EF⊥AB,垂足为点F.(1)求证:EF是⊙O的切线;(2)求证:点E是CD的中点;(3)若⊙O的直径为18,BC=12,求AD的长.11.(2022·广东·广州市白云区白云实验学校八年级期中)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是AC边上一个动点(不与点D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交射线DE于点G.请画出完整图形,探究MD,DG与AD数量之间的关系,并说明理由.12.(2022·福建·上杭县教师进修学校八年级期中)数学活动课上老师出示如下问题,供同学们探究讨论:如图,在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是线段BD上的一个动点(不与点B重合,且BC≠BE),在线段BE上截取BA=BC,连接AC.试探究线段AE,BF,CD之间的数量关系.小敏与同桌小聪经过深入的思考讨论后,进行了如下探究:特殊入手,探索结论:(1)①如图,若点C与点D重合,即线段CD=0,观察此时线段AE,BF之间的数量关系是AE=BF,即有:AE=BF+CD,请你说明AE=BF的理由;特例启发,猜测结论:②若点C不与点D重合,猜测线段AE,BF,CD之间的数量关系是___________,并给予证明;完成上面的问题后,老师继续提出下列问题,请同学们探究讨论:深入探究,拓展结论:(2)在上面的问题中,若把“点C是线段BD上的一个动点”改为“点C是射线BD上的一个动点,其它条件都不变.”,则当点C在线段BD的延长线上时,请你用等式表示线段AE,BF,CD之间的数量关系(自行画图探究,直接写出结果,不需要证明).13.(2022·江苏常州·八年级期中)如图,△ABC中,AB=AC,AD、CE是高,连接DE.(1)求证:DE=BD;(2)若∠BAC=50°,求∠BED的度数.14.(2022·广东·丰顺县第一中学九年级阶段练习)如图,在△ABC中,∠ACB=90∘,D为BC上任一点,DE⊥AB,垂足为E,M,N分别为AD,CE的中点.求证:15.(2021·广西大学附属中学九年级阶段练习)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,与AC、BC分别交于点M、N,与AB的另一个交点为E,过点N作NF⊥AB,垂足为F(1)求证:NF是⊙O的切线;(2)若NF=2,DF=1,求⊙O的半径和弦ED的长.16.(2022·四川省成都市七中育才学校八年级期中)如图,四边形OABC是一张长方形纸片,将其放在平面直角坐标系中,使得点O与坐标原点重合,点A、C分别在x轴、y轴的正半轴上,点B的坐标为3,4,D的坐标为2,4,现将纸片沿过D点的直线折叠,使顶点C落在线段AB上的点F处,折痕与y轴的交点记为E.(1)求点F的坐标和∠FDB的大小;(2)在x轴正半轴上是否存在点Q,满足S△QDE=S(3)点P在直线DE上,且△PEF为等腰三角形,请直接写出点P的坐标.17.(2022·浙江·杭州市十三中教育集团(总校)八年级期中)如图1,△ACB和△DCE均为等腰三角形,CA=CB,CD=CE,∠ACB=∠DCE.点A,D,E在同一条直线上,连结BE.(1)求证:AD=BE.(2)如图2,若∠ACB=60°,求∠AEB的度数.(3)若∠CEB=135°,CM为△DCE中DE边上的高.猜想线段CM,AE,BE之间存在的数量关系,并证明.18.(2022·吉林白城·九年级期中)[操作]如图1.△ABC是等腰直角三角形,∠ACB=90°,D是其内部的一点,连接CD.将CD绕点(顺时针旋转90°得到CE,连接DE,作直线AD交BE于点(1)求证:△ADC≌△BEC;(2)求∠AFE的度数;(3)[探究]如图2,连接图1中的AE,分别取AB、DE、AE的中点M、N、P,作△MNP.若BE=8,则△MNP的周长为19.(2022·黑龙江·哈尔滨市萧红中学校九年级期中)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,DE与⊙O相切交AB的延长线于点E.(1)求证:∠AED=∠ABC;(2)点G是弧AB的中点,连接CG,过点B作BH⊥CG于点H,延长BH交AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年式通勤车租赁合同
- 《动态奖惩机制下装配式建筑质量链参与主体演化博弈研究》
- 《旋后肌综合征“三线定位法”诊断意义及临床应用研究》
- 《渐进式膈肌锻炼对肺癌围手术期患者肺康复效果的影响》
- 《miR-219a-5p在人骨髓间充质干细胞成骨分化中的作用及机制研究》
- 2024年那曲公交车从业资格证考试题库
- 2024年阿坝小型客运从业资格证考试题答案
- 2024年贵港道路旅客运输驾驶员继续教育试题
- 2024年度物流运输合同:物流公司与托运人就货物运输、保险等事项
- 2024年齐齐哈尔道路运输从业资格证考试
- 脑卒中基本知识课件
- 高效沟通与管理技能提升课件
- 消防维保方案 (详细完整版)
- 四年级上册英语课件- M3U1 In the school (Period 3 ) 上海牛津版试用版(共15张PPT)
- 档案馆建设标准
- 高边坡支护专家论证方案(附有大量的图件)
- 苏教版五年级上册数学试题-第一、二单元 测试卷【含答案】
- 人员定位矿用井口唯一性检测系统
- 电力系统数据标记语言E语言格式规范CIME
- 历史纪年与历史年代的计算方法
- 快递物流运输公司 国际文件样本 形式发票样本
评论
0/150
提交评论