专题02 手拉手模型(解析版)_第1页
专题02 手拉手模型(解析版)_第2页
专题02 手拉手模型(解析版)_第3页
专题02 手拉手模型(解析版)_第4页
专题02 手拉手模型(解析版)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题02手拉手模型【模型说明】应用:通过辅助线利用旋转构造全等三角形解决问题。【例题精讲】例1.(基本模型)如图,,,三点在一条直线上,和均为等边三角形,与交于点,与交于点.(1)求证:;(2)若把绕点任意旋转一个角度,(1)中的结论还成立吗?请说明理由.【答案】(1)见解析(2)成立,理由见解析.【详解】解:(1)证明:如图1中,与都是等边三角形,,,,,,,即.在和中,,(SAS)..即AE=BD,(2)成立;理由如下:如图2中,、均为等边三角形,,,,,即,在和中,,,.例2.(辅助线构造模型)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D为三角形右侧外一点.且∠BDC=45°.连接AD,若△ACD的面积为,则线段CD的长度为___.【答案】【详解】解:过点B作BE⊥BD,交DC的延长线于点E,连接AE,如图所示:∵∠ABC=90°,∴,∴,∵∠BDC=45°,∠EBD=90°,∴△EBD是等腰直角三角形,∴∠BDC=∠BED=45°,BE=BD,∵AB=BC,∴△BCD≌△BAE(SAS),∴∠BDC=∠BEA=45°,AE=CD,∴,∵,∴,∴;故答案为.例3.(手拉手培优)如图1,在△ABC中,CA=CB,∠ACB=90°.点D是AC中点,连接BD,过点A作AE⊥BD交BD的延长线于点E,过点C作CF⊥BD于点F.(1)求证:∠EAD=∠CBD;(2)求证:BF=2AE;(3)如图2,将△BCF沿BC翻折得到△BCG,连接AG,请猜想并证明线段AG和AB的数量关系.【答案】(1)见解析;(2)见解析;(3):AG=AB,理由见解析【详解】(1)证明:∵AE⊥BD,∴∠AED=90°,∴∠EAD+∠ADE=90°,∵∠ADE=∠BDC,∴∠EAD+∠BDC=90°,∵∠ACB=90°,∴∠CBD+∠BDC=90°,∴∠EAD=∠CBD;(2)证明:如图1,连接CE,在BF上截取BP=AE,连接CP,∵∠EAD=∠CBD,AC=BC,∴△AEC≌△BPC(SAS),∴CE=CP,∠ACE=∠BCP,∴∠ACE+∠DCP=∠BCP+∠DCP,∴∠ECP=∠DCB=90°,∵CE=CP,CF⊥BD,∴∠CEP=∠CPF=∠PCF=45°,∴CF=PF,∵点D是AC的中点,∴AD=CD,∵∠AED=∠CFD=90°,∠ADE=∠CDF,∴△AED≌△CFD(AAS),∴AE=CF,∴AE=PF,∴BF=BP+PF=2AE;(3)结论:AG=AB,证明如下:如图2,取BG的中点H,连接CE,CH,AH,∴BH===AE,∵∠HBC=∠PBC=∠EAC,∴∠EAC+∠CAB=∠HBC+∠CBA,∴∠EAB=∠HBA,∵AB=BA,∴△AEB≌△BHA(SAS),∴∠BHA=∠AEB=90°,∴AH⊥BG,∵BH=HG,∴AG=AB.【变式训练1】问题发现(1)如图①,已知△ABC,以AB、AC为边向△ABC外分别作等边△ABD和等边△ACE,连接CD,BE.试探究CD与BE的数量关系,并说明理由.问题探究(2)如图②,四边形ABCD中,∠ABC=45°,∠CAD=90°,AC=AD,AB=2BC=60.求BD的长.问题解决(3)如图③,△ABC中,AC=2,BC=3,∠ACB是一个变化的角,以AB为边向△ABC外作等边△ABD,连接CD,试探究,随着∠ACB的变化,CD的长是否存在最大值,若存在求出CD长的最大值及此时∠ACB的大小;若不存在,请说明理由.【答案】(1),理由见解析;(2)90;(3)存在,CD长的最大值为5,∠ACB的大小为【详解】(1)证明:∵△ABD和△ACE是等边三角形∴,,∵∴在与中∴∴;(2)如下图,以AB为腰向上作等腰直角,连接GC∵与是等腰直角三角形∴,,∵∴在与中∴∴;∵是等腰直角三角形,∴,,,∵∴∴∴∴;(3)如下图,以BC为边向外作等边,连接AH∵与是等边三角形∴,,∵∴在与中∴∴;又∵是等边三角形,∴,∵,∴∴当A,C,H三点共线时,∵∴则当时,.【变式训练2】问题背景:如图,△ABC是等边三角形,△BDC是顶角为120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC边于M、N两点,连接MN.探究线段BM,MN,CN之间的数量关系.嘉琪同学探究此问题的方法是:延长NC至点E,使CE=BM,连接DE,先证明△CDE≌△BDM,再证明△MDN≌△EDN,可得出线段BM,MN,CN之间的数量关系为.请你根据嘉琪同学的做法,写出证明过程.探索延伸:若点M,N分别是线段AB,CA延长线上的点,其他条件不变,再探索线段BM,MN,NC之间的关系,写出你的结论,并说明理由.【答案】问题背景:MN=BM+NC,证明见解析;探索延伸:MN=NC﹣BM,理由见解析【详解】问题背景:MN=BM+NC.理由如下:如图1中,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=CD,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,,∴△MBD≌△ECD(SAS),∴MD=DE,,∵∠BDC=120°,∠MDN=60°,∴∠NDC+∠BDM=∠BDC-∠MDN=60゜,∴∠EDN=∠NDC+∠CDE=∠NDC+∠BDM=60゜,即∠MDN=∠EDN,在△DMN和△DEN中,,∴△DMN≌△DEN,∴MN=EN=CE+NC,∴MN=BM+NC.故答案为:MN=BM+NC.探索延伸:如图2中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中,,∴△BMD≌△CED(SAS),∴DE=DM,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=NE=NC﹣CE=NC﹣BM.【课后作业】1.如图,是边长为5的等边三角形,,.E、F分别在AB、AC上,且,则三角形AEF的周长为______.【答案】10【详解】解:延长AB到N,使BN=CF,连接DN,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠ACD=∠ABD=30°+60°=90°=∠NBD,∵在△NBD和△FCD中,,∴△NBD≌△FCD(SAS),∴DN=DF,∠NDB=∠FDC,∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠FDC=60°,∴∠EDB+∠BDN=60°,即∠EDF=∠EDN,在△EDN和△EDF中,,∴△EDN≌△EDF(SAS),∴EF=EN=BE+BN=BE+CF,即BE+CF=EF.∵△ABC是边长为5的等边三角形,∴AB=AC=5,∵BE+CF=EF,∴△AEF的周长为:AE+EF+AF=AE+EB+FC+AF=AB+AC=10,故答案为:10.2.△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A,D,E在同一直线上,连接AE,BE.①求证:△ACD≌△BCE;②求∠AEB的度数.(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.【答案】(1)①见解析;②∠AEB=60°;(2)∠ADB=60°,2DM+BD=AD,理由见解析;(3)α=60°,证明见解析【解析】(1)①证明:∵△ACB和△DCE是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°-∠DCB=∠BCE,∴△ACD≌△BCE(SAS);②∵△ACD≌△BCE,∴∠ADC=∠BEC=180°-∠CDE=120°,又∵∠CED=60°,∴∠AEB=60°;(2)解:∠ADB=60°,2DM+BD=AD,理由如下;∵AC=BC,CD=CE,∠ACD=60°+∠DCB=∠BCE,∴△ACD≌△BCE(SAS),∴∠CDA=∠CED=60°;∵∠ADB+∠CDA=∠DCE+∠CED,∴∠ADB=60°;又∵CM⊥BE,且△CDE为等边三角形,∴DE=2DM,∴2DM+BD=BE=AD;(3)解:α=60°,理由如下:同理可证△ACD≌△BCE,∴∠BEC=∠ADC,∴∠CDF+∠CEF=180°,∴∠ECD+∠DFE=180°,而α+∠DFE=180°,∴α=∠ECD=60°.3.【问题探究】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,则CD=.【答案】(1)BD=CE;(2)BD2=54;(3)8【详解】解:(1)BD=CE.理由是:∵∠BAE=∠CAD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE;(2)如图2,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE.∵AE=AB=5,∴BE=,∠ABE=∠AEB=45°,又∵∠ABC=45°,

∴∠ABC+∠ABE=45°+45°=90°,∴,∴.(3)如图,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,把△ACD绕点C逆时针旋转60°得到△BCE,连接DE,则BE=AD,△CDE是等边三角形,∴DE=CD,∠CED=60°,∵∠ADC=30°,∴∠BED=30°+60°=90°,在Rt△BDE中,DE===8,

∴CD=DE=8.4.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE相交于点P,交AC于点M,交AD于点N.(1)求证:BD=CE.(2)求证:AP平分∠BPE.(3)若α=60°,试探寻线段PE、AP、PD之间的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)PE=AP+PD,见解析【解析】(1)证明:∵∠BAC=∠DAE=α,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)证明:如图,过点A作AH⊥BD,AF⊥CE,∵△BAD≌△CAE,∴S△BAD=S△CAE,BD=CE,∴BD×AH=CE×AF,∴AH=AF,又∵AH⊥BD,AF⊥CE,∴AP平分∠BPE;(3)解:PE=AP+PD,理由如下:如图,在线段PE上截取OE=PD,连接AO,∵△BAD≌△CAE,∴∠BDA=∠CEA,又∵OE=PD,AE=AD,∴△AOE≌△APD(SAS),∴AP=AO,∵∠BDA=∠CEA,∠PND=∠ANE,∴∠NPD=∠DAE=α=60°,∴∠BPE=180°-∠NPD=180°-60°=120°,又∵AP平分∠BPE,∴∠APO=60°,又∵AP=AO,∴△APO是等边三角形,∴AP=PO,∵PE=PO+OE,∴PE=AP+PD.5.已知,在中,,,点D为BC的中点.(1)观察猜想如图①,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是______________;线段DE与DF的位置关系是______________.(2)类比探究如图②,若点E、F分别是AB、AC上的点,且,上述结论是否仍然成立,若成立,请证明:若不成立,请说明理由;(3)解决问题如图③,若点E、F分别为AB、CA延长线的点,且,请直接写出的面积.【答案】(1),;(2)成立,证明见解析;(3)【详解】解:(1)∵点E、F、D分别是AB、AC、BC的中点,∴,,,,∵,,∴,,∴即,故答案为:,;(2)结论成立:,,证明:如图所示,连接,∵,,D为BC的中点,∴,且AD平分,,∴,在和中,,∴,∴,,∵,∴,即,即;(3)如图所示,连接AD,∵,,D为BC的中点,∴∴,且AD平分,,∴,∴∠FAD=180°-∠CAD=135°,∠EBD=180°-∠ABC=135°,∴∠FAD=∠EBD,在在和中,,∴△BDE≌△ADF(SAS),∴,∴,∵,∴,∴,∴6.已知:△ABC与△BDE都是等腰三角形.BA=BC,BD=BE(AB>BD)且有∠ABC=∠DBE.(1)如图1,如果A、B、D在一直线上,且∠ABC=60°,求证:△BMN是等边三角形;(2)在第(1)问的情况下,直线AE和CD的夹角是°;(3)如图2,若A、B、D不在一直线上,但∠ABC=60°的条件不变则直线AE和CD的夹角是°;(4)如图3,若∠ACB=60°,直线AE和CD的夹角是°.【答案】(1)证明见解析;(2)60;(3)60;(4)60;【详解】(1)∵∠ABC=∠DBE=60°∴,,∴∵BA=BC,BD=BE和中∴∴和中∴∴∴为等边三角形;(2)∵∠ABC=∠DBE=60°,BA=BC∴为等边三角形;∴根据题意,AE和CD相交于点O,∵∴∵∴∴,即直线AE和CD的夹角是故答案为:;(3)∵∠ABC=∠DBE=60°,BA=BC,∴为等边三角形;∴∵,,∠ABC=∠DBE=60°∴∵BA=BC,BD=BE和中,∴∴如图,延长,交CD于点O∴∵∴∴,即直线AE和CD的夹角是故答案为:;(4)∵BA=BC,∴∵∠ACB=60°,∴,∴为等边三角形∵BD=BE,∠ABC=∠DBE,∴∵,,∴和中,,∴,∴分别延长CD、AE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论