版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初二上学期压轴题模拟数学试题带答案1.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°.(1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数.(2)如图1,求证:EF=2AD.(3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论.2.如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点.(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:.3.完全平方公式:适当的变形,可以解决很多的数学问题.例如:若,求的值.解:因为所以所以得.根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则;②若则;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.4.请按照研究问题的步骤依次完成任务.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为;【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P);(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论.5.已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点.(1)如图1,以A点为顶点、AB为腰在第三象限作等腰,若,,求C点的坐标;(2)如图2,若点A的坐标为,点B的坐标为,点D的纵坐标为n,以B为顶点,BA为腰作等腰.当B点沿y轴负半轴向下运动且其他条件都不变时,整式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理出;(3)如图3,若,于点F,以OB为边作等边,连接AM交OF于点N,若,,请直接写出线段AM的长.6.在△ABC中,∠ACB=90°,过点C作直线l∥AB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD.点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点F从D点出发,以每秒2cm的速度沿D→C→B→C→D路径运动,终点为D.点E、F同时开始运动,第一个点到达终点时第二个点也停止运动.
(1)当AC=BC时,试证明A、C、D三点共线;(温馨提示:证明∠ACD是平角)(2)若AC=10cm,BC=7cm,设运动时间为t秒,当点F沿D→C方向时,求满足CE=2CF时t的值;(3)若AC=10cm,BC=7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使△CEM≌△CFN成立的t的值.7.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.(1)直接写出的度数.(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值.8.问题引入:(1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示);拓展研究:(2)如图3,,,,猜想度数(用表示),并说明理由;(3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案).【参考答案】2.(1)∠BAC=50°(2)见解析(3)∠GAF﹣∠CAF=60°,理由见解析【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解解析:(1)∠BAC=50°(2)见解析(3)∠GAF﹣∠CAF=60°,理由见解析【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;(3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可.(1)解:∵AE=AB,∴∠AEB=∠ABE=65°,∴∠EAB=50°,∵AC=AF,∴∠ACF=∠AFC=75°,∴∠CAF=30°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠ABC+∠FAC=180°,∴50°+2∠BAC+30°=180°,∴∠BAC=50°.(2)证明:证明:如图,延长AD至点H,使DH=AD,连接BH∵AD是△ABC的中线,∴BD=DC,又∵DH=AD,∠BDH=∠ADC∴△ADC≌△HDB(SAS),∴BH=AC,∠BHD=∠DAC,∴BH=AF,∵∠BHD=∠DAC,∴BH∥AC,∴∠BAC+∠ABH=180°,又∵∠EAF+∠BAC=180°,
∴∠ABH=∠EAF,又∵AB=AE,BH=AF,∴△AEF≌△BAH(SAS),∴EF=AH=2AD,∴EF=2AD;(3)结论:∠GAF﹣∠CAF=60°.理由:由(2)得,AD=EF,又点G为EF中点,∴EG=AD,由(2)△AEF≌△BAH,∴∠AEG=∠BAD,在△EAG和△ABD中,,∴△EAG≌△ABD,∴∠EAG=∠ABC=60°,AG=BD,∴△AEB是等边三角形,AG=CD,∴∠ABE=60°,∴∠CBM=60°,在△ACD和△FAG中,,∴△ACD≌△FAG,∴∠ACD=∠FAG,∵AC=AF,∴∠ACF=∠AFC,在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°,∴60°+2∠BCF=360°,∴∠BCF=150°,∴∠BCA+∠ACF=150°,∴∠GAF+(180°﹣∠CAF)=150°,∴∠GAF﹣∠CAF=60°.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.3.(1);(2)证明见解析;(3)证明见解析.【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直解析:(1);(2)证明见解析;(3)证明见解析.【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论;(3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论.【详解】解:(1)∵a2-2ab+2b2-16b+64=0,∴(a-b)2+(b-8)2=0,∴a=b=8,∴b-6=2,∴点C(2,-8);(2)∵a=b=8,∴点A(0,6),点B(8,0),点C(2,-8),∴AO=6,OB=8,如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q,∴四边形AOBP是矩形,∴AO=BP=6,AP=OB=8,∵点B(8,0),点C(2-8),∴CQ=6,BQ=8,∴AP=BQ,CQ=BP,又∠APB=∠BCQ∴△ABP≌△BCQ(SAS),∴AB=BC,∠BAP=∠CBQ,∵∠BAP+∠ABP=90°,∴∠ABP+∠CBQ=90°,∴∠ABC=90°,∴△ABC是等腰直角三角形,∴∠BAC=45°,∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°,∴∠OAC+∠ABO=45°;(3)如图2,过点A作AT⊥AB,交x轴于T,连接ED,∴∠TAE=90°=∠AGE,∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG,∴∠ATO=∠GAE,∠TAO=∠AEG,又∵EG=AO,∴△ATO≌△EAG(AAS),∴AT=AE,OT=AG,∵∠BAC=45°,∴∠TAD=∠EAD=45°,又∵AD=AD,∴△TAD≌△EAD(SAS),∴TD=ED,∠TDA=∠EDA,∵EG⊥AG,∴EG∥OB,∴∠EFD=∠TDA,∴∠EFD=∠EDF,∴EF=ED,∴EF=ED=TD=OT+OD=AG+OD,∴EF=AG+OD.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.4.(1)12;(2)①6;②17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)①两边平方,再将代入计算;②两边平方,再将代入计算;(3)由题意可得:,,两边平方从而解析:(1)12;(2)①6;②17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)①两边平方,再将代入计算;②两边平方,再将代入计算;(3)由题意可得:,,两边平方从而得到,即可算出结果.【详解】解:(1);;;又;,,∴.(2)①,;又,.②由,;又,.(3)由题意可得,,;,;,;图中阴影部分面积为直角三角形面积,,.【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①,②是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案.5.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案为:26°;(4)由题意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案为:∠P=;(5)由题意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案为:∠P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.6.(1)(2)整式的值不发生变化.其值为(3)【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标;(2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为;解析:(1)(2)整式的值不发生变化.其值为(3)【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标;(2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为;(3)在上截取,连接,证明,由全等三角形的性质得出.由等腰三角形的性质可得出结论.(1)解:如图1,过点作于点,,等腰直角三角形,,,.,,.,,,,,;(2)解:整式的值不会变化.理由如下:如图2,过点作于点,,等腰直角三角形,,,,,,,,,,当点沿轴负半轴向下运动时,,整式的值不变,为;(3).证明:如图3,在上截取,连接,是等边三角形,,,为等腰直角三角形,,,,,,,,,,.,,,,,,,,,即.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,正确的做出辅助线并证明三角形全等是解决问题的关键.7.(1)见解析(2)(3)【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=18解析:(1)见解析(2)(3)【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,即A、C、D三点共线;(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;(3)先由∠BCP=∠FCN、∠BCP+∠ECM=90°,∠ECM+∠MEC=90°得到∠MEC=∠FCN,然后结合全等三角形的性质列出方程求得t的值.(1)证明:∵AC=BC,∠ACB=90°,∴∠ABC=45°,∵点B与点D关于直线l对称,∴BD⊥直线l,BC=CD,∵直线l∥AB,∴BD⊥AB,∴∠ABD=90°,∴∠CBD=∠CDB=45°,∴∠BCD=90°,∴∠ACB+∠BCD=180°,∴A、C、D三点共线;(2)解:∵AC=10cm,BC=7cm,∴当点F沿D→C方向时,0≤t≤3.5,∴CE=10-t,CF=7-2t,∵CE=2CF,∴10-t=2(7-2t),解得:t=.(3)解:∵∠BCP=∠FCN,∠BCP+∠ECM=90°,∠ECM+∠MEC=90°,∴∠MEC=∠FCN,∵△CEM≌△CFN,当CE=CF时,△CEM≌△CFN,当点F沿D→C路径运动时,10-t=7-2t,解得,t=-3,不合题意,当点F沿C→B路径运动时,10-t=2t-7,解得,t=,当点F沿B→C路径运动时,10-t=7-(2t-7×2),解得,t=11,∵第一个点到达终点时第二个点也停止运动.点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.AC=10,∴0≤t≤10,∴t=11时,已停止运动.综上所述,当t=秒时,△CEM≌△CFN.【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键.8.(1);(2);(3).【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,,进而证明解析:(1);(2);(3).【分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皮革制品招投标现状解析
- 护理硕士毕业论文答辩
- 建筑维修审查合同
- 高中生物遗传病概率计算
- 植物园绿化项目聘用合同
- 运动俱乐部泳池租赁协议
- 电子科技清罐施工合同
- 石油公司电气安全检查流程
- 地铁站装修改造协议
- 矿井排水泵机租赁协议
- 教学病例讨论模板
- 林业工程竣工报告
- 从偏差行为到卓越一生3.0版
- 失血性休克患者的麻醉处理
- 2024网站渗透测试报告
- DG-TJ08-2433A-2023 外墙保温一体化系统应用技术标准(预制混凝土反打保温外墙)
- 九年级上期中考试质量分析
- 《共情的力量》课件
- 单词默写表(素材)-2023-2024学年人教PEP版英语五年级上册
- 屠宰行业PEST分析
- JBT 14191-2023 管道带压开孔机 (正式版)
评论
0/150
提交评论