版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上2024届高三第二次调研数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出下列三个命题:①“”的否定;②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0 B.1 C.2 D.32.设双曲线(,)的一条渐近线与抛物线有且只有一个公共点,且椭圆的焦距为2,则双曲线的标准方程为()A. B. C. D.3.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件4.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过5.已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是A. B.C. D.6.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要7.已知集合,,则()A. B. C. D.8.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为()A. B. C. D.9.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A. B. C. D.10.已知函数是奇函数,且,若对,恒成立,则的取值范围是()A. B. C. D.11.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.12.已知函数是定义在上的奇函数,函数满足,且时,,则()A.2 B. C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.14.若椭圆:的一个焦点坐标为,则的长轴长为_______.15.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为_______.16.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.18.(12分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.19.(12分)已知椭圆的左右焦点分别为,焦距为4,且椭圆过点,过点且不平行于坐标轴的直线交椭圆与两点,点关于轴的对称点为,直线交轴于点.(1)求的周长;(2)求面积的最大值.20.(12分)选修4—5;不等式选讲.已知函数.(1)若的解集非空,求实数的取值范围;(2)若正数满足,为(1)中m可取到的最大值,求证:.21.(12分)某社区服务中心计划按月订购一种酸奶,每天进货量相同,进货成本每瓶5元,售价每瓶7元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:摄氏度℃)有关.如果最高气温不低于25,需求量为600瓶;如果最高气温位于区间,需求量为500瓶;如果最高气温低于20,需求量为300瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数414362763以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为(单位:瓶)时,的数学期望的取值范围?22.(10分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上的点到直线距离的最小值和最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题.故假命题有①③.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.2、B【解析】
设双曲线的渐近线方程为,与抛物线方程联立,利用,求出的值,得到的值,求出关系,进而判断大小,结合椭圆的焦距为2,即可求出结论.【详解】设双曲线的渐近线方程为,代入抛物线方程得,依题意,,椭圆的焦距,,双曲线的标准方程为.故选:B.【点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.3、C【解析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.4、D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.5、B【解析】
此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.6、B【解析】
利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。7、B【解析】
求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.8、C【解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质,还考查了运算求解的能力,属于中档题.9、B【解析】
根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,∴此三棱锥的外接球即为长方体的外接球,且球半径为,∴三棱锥外接球表面积为,∴当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B.【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.10、A【解析】
先根据函数奇偶性求得,利用导数判断函数单调性,利用函数单调性求解不等式即可.【详解】因为函数是奇函数,所以函数是偶函数.,即,又,所以,.函数的定义域为,所以,则函数在上为单调递增函数.又在上,,所以为偶函数,且在上单调递增.由,可得,对恒成立,则,对恒成立,,得,所以的取值范围是.故选:A.【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.11、C【解析】
显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.12、D【解析】
说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【详解】由知函数的周期为4,又是奇函数,,又,∴,∴.故选:D.【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由三视图还原原几何体,该几何体为四棱锥,底面为直角梯形,,,侧棱底面,由棱锥体积公式求棱锥体积,由勾股定理求最长棱的长度.【详解】由三视图还原原几何体如下图所示:该几何体为四棱锥,底面为直角梯形,,,侧棱底面,则该几何体的体积为,,,因此,该棱锥的最长棱的长度为.故答案为:;.【点睛】本题考查由三视图求体积、棱长,关键是由三视图还原原几何体,是中档题.14、【解析】
由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或由表示的是椭圆,则,所以,则椭圆方程为所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对的两个值进行取舍.15、【解析】
先求导数可得切线斜率,利用基本不等式可得切点横坐标,从而可得切线方程.【详解】,,=1时有最小值1,此时M(1,﹣2),故切线方程为:,即.故答案为:.【点睛】本题主要考查导数的几何意义,切点处的导数值等于切线的斜率是求解的关键,侧重考查数学运算的核心素养.16、1【解析】
建系,设,表示出点坐标,则,根据的范围得出答案.【详解】解:以为原点建立平面坐标系如图所示:则,,,,设,则,,,,,,,显然当取得最大值4时,取得最小值1.故答案为:1.【点睛】本题考查了平面向量的数量积运算,坐标运算,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,,令,得或,故根据0与的大小关系来进行分类讨论即可【详解】证明:(1)令,则.分析知,函数的增区间为,减区间为.所以当时,.所以,即,所以.所以当时,.解:(2)因为,所以.讨论:①当时,,此时函数在区间上单调递减.又,故此时函数仅有一个零点为0;②当时,令,得,故函数的增区间为,减区间为,.又极大值,所以极小值.当时,有.又,此时,故当时,函数还有一个零点,不符合题意;③当时,令得,故函数的增区间为,减区间为,.又极小值,所以极大值.若,则,得,所以,所以当且时,,故此时函数还有一个零点,不符合题意.综上,所求实数的值为.【点睛】本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据正弦定理先求得边c,然后由余弦定理可求得边b;(Ⅱ)结合二倍角公式及和差公式,即可求得本题答案.【详解】(Ⅰ)因为,由正弦定理可得,,又,所以,所以根据余弦定理得,,解得,;(Ⅱ)因为,所以,,,则.【点睛】本题主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,属基础题.19、(1)12(2)【解析】
(1)根据焦距得焦点坐标,结合椭圆上的点的坐标,根据定义;(2)求出椭圆的标准方程,设,联立直线和椭圆,结合韦达定理表示出面积,即可求解最大值.【详解】(1)设椭园的焦距为,则,故.则椭圆过点,由椭圆定义知:,故,因此,的周长;(2)由(1)知:,椭圆方程为:设,则,,,,,当且仅当在短轴顶点处取等,故面积的最大值为.【点睛】此题考查根据椭圆的焦点和椭圆上的点的坐标求椭圆的标准方程,根据直线与椭圆的交点关系求三角形面积的最值,涉及韦达定理的使用,综合性强,计算量大.20、(1);(2)见解析.【解析】试题分析:(1)讨论三种情况去绝对值符号,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因为,要证,只需证,即证,只需证即可得结果.试题解析:(1)去绝对值符号,可得所以,所以,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商丘工学院《织物产品结构与工艺(二)》2023-2024学年第一学期期末试卷
- 汕尾职业技术学院《运动疗法技术学1》2023-2024学年第一学期期末试卷
- 收取合作公司礼品合同范例
- 汕头大学《染织工艺基础》2023-2024学年第一学期期末试卷
- 出售学校学区房合同范例
- 2024至2030年耐火材料干片项目投资价值分析报告
- 2024至2030年硝酸钾项目投资价值分析报告
- 租赁男友合同范例
- 电箱购销合同范例
- 2024至2030年冰雪玻璃项目投资价值分析报告
- 全国运动员代表资格协议书
- 小学消防安全检查记录表【模板】
- 制氢操作规程6篇
- GB/T 4744-2013纺织品防水性能的检测和评价静水压法
- 期末复习必背作文 鲁教版八年级上册英语全册
- 《食品毒理学》教学PPT课件整套电子讲义
- 公路机电工程施工规范
- QUALITY MANUAL质量手册(英文版)
- 高考语文复习:诗歌意象专题训练
- 国开经济学(本)1-14章练习试题及答案
- 救助消防安全管理制度
评论
0/150
提交评论