鹤壁市重点中学2023-2024学年中考联考数学试卷含解析_第1页
鹤壁市重点中学2023-2024学年中考联考数学试卷含解析_第2页
鹤壁市重点中学2023-2024学年中考联考数学试卷含解析_第3页
鹤壁市重点中学2023-2024学年中考联考数学试卷含解析_第4页
鹤壁市重点中学2023-2024学年中考联考数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鹤壁市重点中学2023-2024学年中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x42.下列四个图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.tan45º的值为()A. B.1 C. D.4.边长相等的正三角形和正六边形的面积之比为()A.1∶3 B.2∶3 C.1∶6 D.1∶5.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形6.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为()A. B. C. D.7.下列运算正确的是()A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(2+3)2=58.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.9.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米10.已知关于x的一元二次方程有实数根,则m的取值范围是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c=______.12.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为________.13.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.14.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____15.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.16.分式方程=1的解为_________.三、解答题(共8题,共72分)17.(8分)在平面直角坐标系xOy中,抛物线y=12x(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.18.(8分)如图,抛物线交X轴于A、B两点,交Y轴于点C,.(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。19.(8分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:,,)20.(8分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.21.(8分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.22.(10分)解方程:3x2﹣2x﹣2=1.23.(12分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.24.学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】A.x4+x4=2x4,故错误;B.(x2)3=x6,故错误;C.(x﹣y)2=x2﹣2xy+y2,故错误;D.x3•x=x4,正确,故选D.2、D【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【解析】

解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.4、C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•=a,∴S△ABC=BC•AD=×1a×a=a1.连接OA、OB,过O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•=a,∴S△ABO=BA•OD=×1a×a=a1,∴正六边形的面积为:2a1,∴边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2.故选C.点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.5、C【解析】

根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【点睛】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.6、C【解析】

由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个.【点睛】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.7、B【解析】

利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+26+3=5+26,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频9、D【解析】解:0.5纳米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故选D.点睛:在负指数科学计数法中,其中,n等于第一个非0数字前所有0的个数(包括下数点前面的0).10、C【解析】

解:∵关于x的一元二次方程有实数根,∴△==,解得m≥1,故选C.【点睛】本题考查一元二次方程根的判别式.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,∴由中点公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案为1.12、【解析】

作出D关于AB的对称点D’,则PC+PD的最小值就是CD’的长度,在△COD'中根据边角关系即可求解.【详解】解:如图:作出D关于AB的对称点D’,连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为弧BC的中点,即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.则△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案为:.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.13、1【解析】

过点C作CH∥AB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值.【详解】如下图,过点C作CH∥AB交DE的延长线于点H,则,∵DF∥CH,∴,∴,∴,同理,∴,∴,解得t=1,t=(舍去),故答案为:1.【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.14、【解析】

设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.【详解】设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018为(1009,0).故答案为:(),(1009,0).【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.15、1【解析】

根据弧长公式l=代入求解即可.【详解】解:∵,∴.故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.16、x=1【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=6≠0,所以分式方程的解为x=1,故答案为:x=1.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三、解答题(共8题,共72分)17、(1)y=12x+1【解析】试题分析:(1)首先根据抛物线y=12x2-x+2求出与y轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为y=kx+b.代入点B,点C的坐标,然后解方程组即可;(2)求出点D、E、F的坐标,设点A平移后的对应点为点A',点D平移后的对应点为点D'.当图象G向下平移至点A'与点E重合时,点D'在直线BC上方,此时t=1;当图象G向下平移至点D'试题解析:解:(1)∵抛物线y=12x∴点A的坐标为(0,2).1分∵y=1∴抛物线的对称轴为直线x=1,顶点B的坐标为(1,32又∵点C与点A关于抛物线的对称轴对称,∴点C的坐标为(2,2),且点C在抛物线上.设直线BC的解析式为y=kx+b.∵直线BC经过点B(1,32∴k+b=32∴直线BC的解析式为y=1(2)∵抛物线y=1当x=4时,y=6,∴点D的坐标为(1,6).1分∵直线y=1当x=0时,y=1,当x=4时,y=3,∴如图,点E的坐标为(0,1),点F的坐标为(1,2).设点A平移后的对应点为点A',点D平移后的对应点为点D'.当图象G向下平移至点A'与点E重合时,点D'在直线BC上方,此时t=1;5分当图象G向下平移至点D'与点F重合时,点A'在直线BC下方,此时t=2.6分结合图象可知,符合题意的t的取值范围是1<t≤考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.18、(1);(2)(3,-4)或(5,4)或(-5,4)【解析】

(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)设抛物线的解析式为y=ax2+bx+c则有:解得所以函数解析式为:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如图:P1相当于C点向右平移了5个单位长度,则坐标为(5,4);P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);设P3坐标为(m,n)在第四象限,要使AP3BC是平行四边形,则有AP3=BC,BP3=AC∴即(舍去)P3坐标为(3,-4)【点睛】本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.19、33.3【解析】

根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.【详解】解:∵AC====∴矩形面积=10≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【点睛】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.20、一次函数解析式为;反比例函数解析式为;.【解析】

(1)根据A(-1,0)代入y=kx+2,即可得到k的值;(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;(3)先根据D(a,0),PD∥y轴,即可得出P(a,2a+2),Q(a,),再根据PQ=2QD,即可得,进而求得D点的坐标.【详解】(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;把C(1,n)代入y=2x+2得n=4,∴C(1,4),把C(1,4)代入y=得m=1×4=4,∴反比例函数解析式为y=;(2)∵PD∥y轴,而D(a,0),∴P(a,2a+2),Q(a,),∵PQ=2QD,∴2a+2﹣=2×,整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),∴D(2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.21、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解析】试题分析:把点的坐标代入即可求得抛物线的解析式.作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数.延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标.试题解析:(1)由题意,得解得.∴这条抛物线的表达式为.(2)作BH⊥AC于点H,∵A点坐标是(-1,0),C点坐标是(0,3),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论