专题03 AX型(解析版)-2022-2023学年九年级数学相似三角形基本模型探究(北师大版)_第1页
专题03 AX型(解析版)-2022-2023学年九年级数学相似三角形基本模型探究(北师大版)_第2页
专题03 AX型(解析版)-2022-2023学年九年级数学相似三角形基本模型探究(北师大版)_第3页
专题03 AX型(解析版)-2022-2023学年九年级数学相似三角形基本模型探究(北师大版)_第4页
专题03 AX型(解析版)-2022-2023学年九年级数学相似三角形基本模型探究(北师大版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题03AX字型【基本模型】A字型及X字型两者相结合,通过线段比进行转化.【例题精讲】例1.如图,在中,、分别是、的中点,动点在射线上,交于点,的平分线交于点,当时,_____.【解析】如图,延长BQ交射线EF于点M、分别是、的中点平分由得即故答案为:12.例2.如图,△ABC中,D.E分别是AB、AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.【解答】(1)证明:∵BD=2AD,CE=2AE,∴ADAB又∵∠DAE=∠BAC,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴DEBC=ADAB=13∴DE∥BC,∴△DEF∽△CBF,∴DFCF=DECB,即2CF=例3.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A. B. C. D.【答案】C【详解】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB∥DG,∴△ABE∽△CGE,∴,故选:C.【变式训练1】如图,在平行四边形ABCD中,点E在边BC上,连结AE并延长,交对角线BD于点F、DC的延长线于点G.如果CEBE=2【解答】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∵AD∥BE,∴△BEF∽△DAF,∴EFAF又∵BC=BE+CE,CEBE=23,∴BE=35BC=35DA,∴EF=3∵CE∥AD,△CEG∽DAG,∴GEGA=CEDA=2∴GE=25-2AE=23×83【变式训练2】已知中,,(如图).以线段为边向外作等边三角形,点是线段的中点,连接并延长交线段于点.(1)求证:四边形为平行四边形;(2)连接,交于点.①若,求的长;②作,垂足为,求证:.【答案】(1)证明见解析;(2)①;②证明见解析.【详解】(1)∵是等边三角形∴,在中,∴∵点是线段的中点∴∴是等边三角形∴,∴∴∴∴四边形为平行四边形;(2)①如图,连接,交于点∵∴∴∵,∴∵∴;②如图,作,垂足为∵,,∴∴,∴,∴∴.【变式训练3】如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求的长.【答案】(1)见解析(2)2【解析】解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,∵=,AF=2,∴,解得x=,∴BE=BF=,∵=,且CE=AF,∴==,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴,∴,且∠ACB=∠ACB,∴△ABC~△MEC,∴∠CAB=∠CME=∠ACB,∴ME=CE=2.【课后训练】1.已知,平行四边形中,点是的中点,在直线上截取,连接,交于,则___________.【答案】;.【详解】解:(1)点F在线段AD上时,设EF与CD的延长线交于H,∵AB//CD,∴△EAF∽△HDF,∴HD:AE=DF:AF=1:2,即HD=AE,∵AB//CD,∴△CHG∽△AEG,∴AG:CG=AE:CH,∵AB=CD=2AE,∴CH=CD+DH=2AE+AE=AE,∴AG:CG=2:5,∴AG:(AG+CG)=2:(2+5),即AG:AC=2:7;(2)点F在线段AD的延长线上时,设EF与CD交于H,∵AB//CD,∴△EAF∽△HDF,∴HD:AE=DF:AF=1:2,即HD=AE,∵AB//CD,∴AG:CG=AE:CH∵AB=CD=2AE,∴CH=CD-DH=2AE-AE=AE,∴AG:CG=2:3,∴AG:(AG+CG)=2:(2+3),即AG:AC=2:5.故答案为:或.2.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求的长.【解析】解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,∵=,AF=2,∴,解得x=,∴BE=BF=,∵=,且CE=AF,∴==,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴,∴,且∠ACB=∠ACB,∴△ABC~△MEC,∴∠CAB=∠CME=∠ACB,∴ME=CE=2.3.图,,点H在BC上,AC与BD交于点G,AB=2,CD=3,求GH的长.【答案】【详解】解:∵,∴∠A=∠HGC,∠ABC=∠GHC,∴△CGH∽△CAB,∴,∵,∴∠D=∠HGB,∠DCB=∠GHB,△BGH∽△BDC,∴,∴,∵AB=2,CD=3,∴,解得:GH=.4.如图,中,中线,交于点,交于点.(1)求的值.(2)如果,,请找出与相似的三角形,并挑出一个进行证明.【答案】(1)3;(2),证明见解析【详解】解:(1)是的中点,是的中点,,,,,,,,,,,,,.(2)当,时,由(1)可得,,,,,,,又,,,,,,,.5.如图,为平行四边形的边延长线上的一点,连接.交于,交于.求证:.【答案】见解析.【详解】证明:∵AB∥DC,∴△AOB∽△COE∴∵AD∥BC,∴△AOF∽△COB∴∴,即.6.如图(1)所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1交AB的延长线于B1.(1)请你探究:,是否都成立?(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断.(3)如图(2)所示Rt△ABC中,∠ACB=90︒,AC=8,BC=,DE∥AC交AB于点E,试求的值.【答案】(1)成立,理由见解析;(2)成立,理由见解析;(3)【详解】解:(1)等边△ABC中,线段AD为其内角角平分线,因为B1C1⊥AC于C1交AB的延长线于B1,∠CAB=60°,∠B1=∠CAD=∠BAD=30°,AD=B1D,综上:这两个等式都成立;(2)可以判断结论仍然成立,证明如下:如图所示,△ABC为任意三角形,过B点作BE∥AC交AD的延长线于E点,线段AD为其内角角平分线∠E=∠CAD=∠BAD,△EBD∽△ACD∴BE=AB,又∵BE=AB.∴,即对任意三角形结论仍然成立;(3)如图(2)所示,因为Rt△ABC中,∠ACB=90°,AC=8,,∵AD为△ABC的内角角平分线,∴∵DE∥AC,∵DE∥AC,∴△DEF∽△ACF,∴7.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.【答案】(1)证明见解析;(2)①证明见解析;②证明见解析【详解】(1)BF⊥AD,在和中,∵,∴;(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=k,BD=4k,∴BH=DH=2k,∵GH∥AD,∴,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴,∴△ACN∽△BAF,∴,∵AB=AG,∴,∴2CN•AG=AF•AC,∴AG2=AF•AC.8.已知:矩形ABCD中,AB=9,AD=6,点E在对角线AC上,且满足AE=2EC,点F在线段CD上,作直线FE,交线段AB于点M,交直线BC于点N.(1)当CF=2时,求线段BN的长;(2)若设CF=x,△BNE的面积为y,求y关于x的函数解析式,并写出自变量的取值范围;(3)试判断△BME能不能成为等腰三角形,若能,请直接写出x的值.【答案】(1)BN=10;(2),0<x<3;,3<x<4.5;(3)x=2或或【详解】解:(1)如图1,在矩形ABCD中,BC=AD=6,,∴△CFE∽△AME,△NCF∽△NBM,∴,∴AM=2CF=4,∴BM=AB﹣AM=5,∴,∴BN=10;(2)当CF=BM时,,此时△BEN不存在,∴CF=9﹣2CF,∴CF=3,当点M和B点重合时,AB=2CF,∴CF=4.5,∴分为0<x<3和3<x<4.5,如图2,当0<x<3时,作EG⊥BC于G,由(1)知,EG=3,AM=2CF=2x,∴BM=9﹣2x,由得,,∴,∴y===;如图3,当3<x<4.5时,由得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论