版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
类类别
初中数学
浅谈初中数学教学中的变式教学内容摘要:变式教学是连接双基与创新的纽带。在数学课堂中被广泛应用。新课程背景EQ下充分运用变式教学,可拓展学生的思维.促使学生自觉将数学学习技术内化为主体需要,使教学过程成为有利于学生积极探究的过程,提高学生的学习效能。本文首先提出变式教学的本质含义、设计变式的原则,然后论述变式在各种数学题型中的应用,最后强调变式教学的价值。关键词:初中数学;变式教学;变式原则;有效教学《数学新课程标准》指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学过程不仅是课本知识的传授,更重要的是对学生能力的训练和情操的培养,尤其要重视学习能力和学习方法的培养。抓住典型习题,寻求多种解题途径,促使学生的思维向多层次、多方向发散。注重这种变式模式的教学,对提高学生分析问题和解决问题的能力大有裨益。因此,在例题、习题教学中,当学生获得某种基本解法后,教师应引导学生发掘例、习题的潜在因素,通过改变题目的条件、探求题目的结论、改变情境等多种变式途径,强化学生对知识和方法的理解,帮助他们对问题进行多角度、多层次的思考。一、数学变式教学的本质含义数学变式教学,是指通过不同角度、不同的侧面、不同的背景,从多个方面变更所提供的数学对象或数学问题的呈现形式,使事物的非本质特征发生变化而本质特征保持不变的教学形式。初中数学变式教学,对提高学生的思维能力、应变能力是大有益处。变式教学在教学过程中不仅是对基础知识、基本技能和思维的训练,而且也是有效实现新课程三维教学目标的重要途径。二、变式教学中遵循的几个原则2.1一题多解,触类旁通通过一题多解,让学生从不同角度思考问题、解决问题,可以引起学生强烈的求异欲望,培养学生思维的灵活性。【案例1】如何复原一个被墨迹浸渍的等腰三角形?(只剩一个底角和一条底边)学生给出的三种“补出”方法:量出∠C度数,画出∠B=∠C,∠B与∠C的边相交得到顶点A;②作BC边上的中垂线,与∠C的一边相交得到顶点A;③“对折”。看画出的三角形是否为等腰三角形,由此引发全等三角形判定定理的证明。这道题从不同的角度进行多向思维,把三角形全等的知识点有机地联系起来,发展了学生的多向思维能力。学生总结出该题的三种常规的办法:①作∠A的平分线,利用“角角边”AB相切,⊙与BC、AB相切,求。(3)如图③,当n大于2的正整数时,若半径的n个等圆⊙、⊙、…、⊙依次外切,且⊙与AC、BC相切,⊙与BC、AB相切,⊙、⊙、⊙、…、⊙均与AB边相切,求.图①图②图③通过该题学生既学到了新知识,又复习了旧知识,还找到了新旧知识之间的联系。由此还可以将这种类型的问题与现实问题情境相结合,真正做到活学活用。变式有一块直角三角形的白铁皮,其一条直角边和斜边长分别为60cm和100cm。若从这块白铁皮上剪出一块尽可能大的圆铁皮,这块圆铁皮的面积有多大?从余下的白铁皮中再剪出一块尽可能大的圆铁皮,这块圆铁皮的半径是多少?多题一解,异中求同由问题的条件或结论的外形结构,联想到与其形式类似的有关题型,从而获得转化桥梁,打开解题思路。【案例4】如图1,一块铁皮呈锐角三角形,它的边BC=80cm,高AD=60cm,要把它加工成矩形零件,使矩形的长、宽之比为2:1,并且矩形长的一边位于BC上,另两个顶点分别在边AB、AC上。求这个矩形零件的长与宽。图1图2变式1如图2,一块铁皮呈锐角三角形,它的边BC=80cm,高AD=60cm,要把它加工成矩形零件,使矩形的长、宽之比为2:1,并且矩形长的一边位于BC上,另两个顶点分别在边AB、AC上。(1)求这个矩形的周长;(2)求这个矩形的面积;(3)求△APQ的面积。变式2如图3,一块铁皮呈三角形,∠BAC=90°,要把它加工成矩形零件,使矩形一边位于BC上,另两个顶点分别在边AB、AC上。试问:PS、BS、CR之间有何关系?为什么?图3图4变式3如图4,一块铁皮呈锐角三角形,它的边BC=80cm,高AD=60cm,要把它加工成矩形零件,矩形的一边位于BC上,另两个顶点分别在边AB、AC上。求这个矩形面积的最大值。三、变式教学要把握好三个“度”3.1变式的数量要“适度”变式不是为了“变式”而变式,而是要根据教学或学习需要,遵循学生的认知规律而设计数学变式,使学生在理解知识的基础之上,把学到的知识转化为能力,形成技能技巧。因此,数学变式要正确把握变式的度,适度进行,适可而止。3.2变式的内容与难度要有“梯度”变式习题的设置不仅要考虑到适当的量的安排,更要注重训练的梯度性,具有科学的循序渐进的训练程序,才能更有效地提高学生的学习效率。【案例5】如左图,由4个等腰直角三角形组成,其中第1个直角三角形的腰长为1cm,求第4个直角三角形的斜边长度。变式1如右图,已知条件不变,求第5个等腰直角三角形的斜边长,并探究第n个等腰直角三角形的斜边长为多少?变式2已知条件不变,求第6个等腰直角三角形直角边的长,并探究第n个等腰直角三角形的直角边长为多少?变式3已知条件不变,求第6个等腰直角三角形的面积,并探究第n个等腰直角三角形的面积为多少?3.3变式教学要提高学生的“参与度”设计问题变式要注重一个“变”,不能简单的重复。变式题组的题目之间要有明显的差异,要使学生对每道题既感到熟悉,又觉得新鲜,让每一个学生都能够参与到数学思考中来。【案例6】如图1,在直线与x轴、y轴所围成的△AOB中,依次放入腰长分别为,,,…的n个等腰直角三角形,则=,=。(或:求,,,…的横坐标。)图1图2变式1如图2,在直线与x轴、y轴所围成的△AOB中,依次放入边长分别为,,,…的n个等边三角形,试猜想第n个等边三角形的边长。变式2二次函数的图象如图所示,点位于坐标原点,点,,,…在y轴上,点,,,…,在所给二次函数位于第一象限的图象上。若△,△,△,…,△为等边三角形,则△的边长=。设计数学变式问题要内涵丰富,境界开阔,给学生留下足够的思维空间。因此,所选范例必须具有典型性。一要注意知识之间的横向联系;二要具有延伸性,可进行一题多变;三要注意思维的创造性和深刻性。四、数学变式教学的价值变式教学是中国基础教育中的精华,值得我们去传承;变式教学是一种十分重要的教学思想,值得我们去钻研;变式教学是经实践证明的有效教学模式,值得我们去实践。结束语在教学中,我们既要有强烈的变式意识,娴熟的变式方法,更要遵循变式教学的规律,合理安排变式教学的内容。如果我们能够把握变式教学和变式训练的正确方法和尺度,在数学教学中恰当使用变式教学和变式训练,不仅能够帮助学生从“题海战役”中解放出来,还对培养学生创造性思维,激发学生学习数学的兴趣,将起到比较积极的作用。相信大家一定可以取得理想的教学效果。参考文献:[1]李善良.现代认知观下的数学概念学习与教学.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《培养契约精神》课件
- 养老院老人物品寄存制度
- 养老院老人紧急救援人员考核奖惩制度
- 向量的数量积课件
- 房屋封阳台协议书(2篇)
- 《广汽乡镇巡展》课件
- 2025年威海c1货运从业资格证模拟考试
- 《学会与父母沟通》课件-图
- 2024年度物业维修基金管理合同示范3篇
- 2025年遵义货运资格证培训考试题
- 食品工程原理课程设计说明书-水冷却牛奶的列管式换热器
- 语文一年级全册单元试卷及期末分类复习综合试卷(含答案)
- 消防安全检查巡查制度范本
- 2023年普通高中信息技术学业水平合格性考试真题及答案
- 例谈数学项目学习开发路径与实践-以“量身定做的全身镜”为例
- 酒店行业开发前台接待员的协作与沟通技巧培训
- 消防中控室搬迁方案范本
- 汽油安全技术说明书(MSDS)
- 穿脱隔离衣及注意事项培训课件穿脱隔离衣的注意事项有哪些
- 实训报告计算机网络直连两台计算机
- 高中生学习思想汇报范文(12篇)
评论
0/150
提交评论