版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西钦州市钦南区2024届中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算中,正确的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x62.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是()A.10mB.20mC.30mD.40m3.下列计算正确的是()A.a+a=2a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a74.方程x2﹣kx+1=0有两个相等的实数根,则k的值是()A.2 B.﹣2 C.±2 D.05.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(
)A. B. C. D.6.如图图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.7.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣28.二次函数y=﹣(x+2)2﹣1的图象的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣29.下列运算正确的是()A.x•x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x610.的一个有理化因式是()A. B. C. D.11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10° B.20° C.50° D.70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.14.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是______.15.计算:()•=__.16.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是___.17.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.18.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.20.(6分)有这样一个问题:探究函数y=﹣2x的图象与性质.小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=﹣2x的自变量x的取值范围是_______;(2)如表是y与x的几组对应值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…则m的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质________.21.(6分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?22.(8分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.23.(8分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?24.(10分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.25.(10分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B=时,四边形OCAD是菱形;②当∠B=时,AD与相切.26.(12分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.求证:四边形ABCD是菱形;若AB=,BD=2,求OE的长.27.(12分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.2、B【解析】
利用配方法求二次函数最值的方法解答即可.【详解】∵s=20t-5t2=-5(t-2)2+20,∴汽车刹车后到停下来前进了20m.故选B.【点睛】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.3、A【解析】
根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C.,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.4、C【解析】
根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.【详解】∵方程x2﹣kx+1=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故选C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.5、D【解析】
一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6、A【解析】A.是轴对称图形,是中心对称图形,故本选项正确;B.是中心对称图,不是轴对称图形,故本选项错误;C.不是中心对称图,是轴对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误。故选A.7、C【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8、D【解析】
根据二次函数顶点式的性质解答即可.【详解】∵y=﹣(x+2)2﹣1是顶点式,∴对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.9、A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、x•x4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2﹣x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误.故选A.10、B【解析】
找出原式的一个有理化因式即可.【详解】的一个有理化因式是,故选B.【点睛】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.11、B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.12、B【解析】
要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、72°.【解析】
解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案为72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.14、1﹣1【解析】
如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=1,即可求出B′D.【详解】如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=1,∵AD=6,∴DE=,∴B′D=1﹣1.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B′在何位置时,B′D的值最小是解题的关键.15、1【解析】试题分析:首先进行通分,然后再进行因式分解,从而进行约分得出答案.原式=.16、2n+1【解析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为2+n.此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解.17、1【解析】
根据相似三角形的对应边的比相等列出比例式,计算即可.【详解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案为1.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.18、1.【解析】试题解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.20、(1)任意实数;(2);(3)见解析;(4)①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.【解析】
(1)没有限定要求,所以x为任意实数,(2)把x=3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y=﹣2x的自变量x的取值范围是任意实数;故答案为任意实数;(2)把x=3代入y=﹣2x得,y=﹣;故答案为﹣;(3)如图所示;(4)根据图象得,①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.故答案为①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.21、(1)80、72;(2)16人;(3)50人【解析】
(1)用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.(2)根据扇形统计图算出骑自行车的所占百分比,再用总人数乘以该百分比即可求出骑自行车的人数,补全条形图即可.(3)依题意设原来开私家车的人中有x人改为骑自行车,用x分别表示改变出行方式后的骑自行车和开私家车的人数,根据题意列出一元一次不等式,解不等式即可.【详解】解:(1)样本中的总人数为8÷10%=80人,∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°(2)骑自行车的人数为80×20%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【点睛】本题主要考查统计图表和一元一次不等式的应用。22、证明见解析.【解析】试题分析:由可得则可证明,因此可得试题解析:即,在和中,考点:三角形全等的判定.23、(1)每次下调10%(2)第一种方案更优惠.【解析】
(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x,根据题意得
5000×(1-x)2=4050
解得x=10%或x=1.9(舍去)
答:平均每次下调10%.
(2)9.8折=98%,
100×4050×98%=396900(元)
100×4050-100×1.5×12×2=401400(元),
396900<401400,所以第一种方案更优惠.
答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.24、(1)y=;(2)(4,0)或(0,0)【解析】
(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=,可得k=1×2=6,∴反比例函数的解析式为y=;(2)根据题意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).设直线AB与x轴交于点C,y=2x﹣4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x﹣2|×(2+6)=8,解得x=4或0,∴点P的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。25、(1)证明见解析;(2)①30°,②45°【解析】试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;
(2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得
②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得试题解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四边形OCAD是平行四边形;(2)①∵四边形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∴故答案为②∵AD与相切,∴∵AD∥OC,∴∴故答案为26、(1)见解析;(1)OE=1.【解析】
(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;
(1)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【详解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(1)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=BD=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度货运司机劳务派遣合同3篇
- 2025年度大豆绿色种植推广合作合同范本3篇
- 2025年度绿色有机西瓜产地直销合作合同范本3篇
- 2025年度不锈钢板材国际贸易结算及风险管理合同3篇
- 2024行政合同争议调解程序:如何有效运用行政优先权3篇
- 2025年度WPS合同管理平台定制开发与实施合同3篇
- 二零二五年甘肃离岗创业人员社保接续与待遇保障合同3篇
- 2025年物流配送与快递快递行业风险管理合同范本3篇
- 2025年度大件货物运输合同模板(含紧急救援预案)3篇
- 二零二四年企业环保培训服务标准合同3篇
- 神经内科国家临床重点专科建设项目评分标准(试行)
- 业主委员会成员推荐表
- 城市设计与城市更新培训
- 2023年贵州省铜仁市中考数学真题试题含解析
- 世界卫生组织生存质量测量表(WHOQOL-BREF)
- 《叶圣陶先生二三事》第1第2课时示范公开课教学PPT课件【统编人教版七年级语文下册】
- 某送电线路安全健康环境与文明施工监理细则
- GB/T 28885-2012燃气服务导则
- PEP-3心理教育量表-评估报告
- 控制性详细规划编制项目竞争性磋商招标文件评标办法、采购需求和技术参数
- 《增值税及附加税费申报表(小规模纳税人适用)》 及其附列资料-江苏税务
评论
0/150
提交评论