2023中考数学考试试卷试题中考数学初三真题及答案解析含答案_第1页
2023中考数学考试试卷试题中考数学初三真题及答案解析含答案_第2页
2023中考数学考试试卷试题中考数学初三真题及答案解析含答案_第3页
2023中考数学考试试卷试题中考数学初三真题及答案解析含答案_第4页
2023中考数学考试试卷试题中考数学初三真题及答案解析含答案_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023中考数学考试试卷试题中考数学初中学业水平考试初三真题及答案解析(含答案和解析)满分:150分时间:120分钟一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5【分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60° B.70° C.80° D.100°【分析】根据平行线和角平分线的定义即可得到结论.解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米 B.1.1×10﹣8米 C.1.1×10﹣7米 D.1.1×10﹣6米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5) B.(﹣5,4) C.(4,﹣5) D.(5,﹣4)【分析】直接利用点的坐标特点进而分析得出答案.解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【分析】根据轴对称图形与中心对称图形的概念求解.解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.7.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形 B.对角线互相垂直的矩形是正方形 C.对角线相等的菱形是正方形 D.对角线互相垂直且平分的四边形是正方形【分析】利用正方形的判定依次判断,可求解.解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.4【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根 B.没有实数根 C.有两个不相等的实数根 D.无法判定【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.6【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A. B. C. D.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.第Ⅱ卷非选择题(共102分)注意事项:必须使用0.5毫米黑色墨水铅签字笔在答题卡上题目所指示区域内作答,作图题可先用铅笔绘出,确认后用0.5毫米黑色墨水铅签字笔描清楚,答在试题卷上无效.二.填空题(共6个小题,每题4分,共24分)13.分解因式:=.【答案】.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式3后继续应用完全平方公式分解即可:.考点:提公因式法和应用公式法因式分解.14.与最接近的自然数是________.【答案】2【解析】【分析】先根据得到,进而得到,因为14更接近16,所以最接近的自然数是2.【详解】解:,可得,∴,∵14接近16,∴更靠近4,故最接近的自然数是2.故答案为:2.【点睛】本题考查无理数的估算,找到无理数相邻的两个整数是解题的关键.15.某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计,以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号)_________________.①.绘制扇形图;②.收集最受学生欢迎菜品的数据;③.利用扇形图分析出受欢迎的统计图;④.整理所收集的数据.【答案】②④①③【解析】【分析】根据统计的一般顺序排列即可.【详解】统计的一般步骤,一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论,故答案为:②④①③.【点睛】本题考查统计的一般步骤,一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论.16.如图,我市在建高铁的某段路基横断面为梯形,∥,长为6米,坡角为45°,的坡角为30°,则的长为________米(结果保留根号)【答案】【解析】【分析】过C作CE⊥AB于E,DF⊥AB于F,分别在Rt△CEB与Rt△DFA中使用三角函数即可求解.【详解】解:过C作CE⊥AB于E,DF⊥AB于F,可得矩形CEFD和Rt△CEB与Rt△DFA,∵BC=6,∴CE=,∴DF=CE=,∴,故答案为:.【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.17.如图,在矩形中,是上的一点,连接,将△进行翻折,恰好使点落在的中点处,在上取一点,以点为圆心,的长为半径作半圆与相切于点;若,则图中阴影部分的面积为____.【答案】.【解析】【分析】连接OG,证明△DOG∽△DFC,得出,设OG=OF=r,进而求出圆的半径,再证明△OFQ为等边三角形,则可由扇形的面积公式和三角形的面积公式求出答案.【详解】解:连接OG,过O点作OH⊥BC于H点,设圆O与BC交于Q点,如下图所示:设圆的半径为r,∵CD是圆的切线,∴OG⊥CD,∴△DOG∽△DFC,∴,由翻折前后对应的线段相等可得DF=DA=4,∵F是BC的中点,∴CF=BF=2,代入数据:∴,∴,∴,∴,∴∠ODG=30°,∴∠DFC=60°,且OF=OQ,∴△OFQ是等边三角形,∴∠DOQ=180°-60°=120°,同理△OGQ也为等边三角形,∴OH=,且S扇形OGQ=S扇形OQF∴.故答案为:.【点睛】本题考查了扇形面积的计算,切线的性质,翻折变换,熟练掌握基本图形的性质是解题的关键.18.如图,直线与轴交于点,与双曲线在第三象限交于两点,且;下列等边三角形,,,……的边,,,……在轴上,顶点……在该双曲线第一象限的分支上,则=____,前25个等边三角形的周长之和为_______.【答案】(1).;(2).60【解析】【分析】设,设直线与轴的交点为H,先求解的坐标,得到∠HAO=30°,用含的代数式表示,联立函数解析式利用根与系数的关系得到关于的方程,从而可得第一空的答案;过分别向轴作垂线,垂足分别为先根据等边三角形的性质与反比例函数的性质求解的边长,依次同法可得后面等边三角形的边长,发现规律,再前25个等边三角形的周长之和即可.【详解】解:设,设直线与轴的交点为H,令则令则∴H(),又A(0,b),∴tan∠HAO=,∴∠HAO=30°,过作轴于过作轴于,∴AB=2BM,AC=2CN,∵BM=,,∴AB=,AC=,∴,联立得到。∴,由已知可得,∴,∴反比例函数的解析式为,过分别向轴作垂线,垂足分别为设由等边三角形的性质得:得:(舍去)经检验:符合题意,可得的边长为4,同理设,解得:(舍去)经检验:符合题意,的边长为,同理可得:的边长为,的边长为.∴前25个等边三角形的周长之和为=故答案为:【点睛】本题考查的是反比例函数的性质,考查一元二次方程的根与系数的关系,等边三角形的性质的应用,锐角三角函数的应用,同时考查与反比例函数相关的规律题,掌握以上知识是解题的关键.三.解答题(共8个题,共78分)19.计算:.【答案】【解析】【分析】根据实数的绝对值、零指数幂和负指数幂的知识进行计算即可.【详解】解:原式=【点睛】本题考查了实数的绝对值、零指数幂、和负指数幂的性质,解答关键是根据相关运算法则进行计算.20.先化简,再求值:,其中为不等式组的整数解.【答案】,【解析】【分析】根据分式的运算法则化简式子,再解不等式组得到不等式组的整数解,代入即可.【详解】解:,解不等式组可得,∵,即,且为整数,∴,代入.【点睛】本题考查分式的化简求值、不等式组的整数解,解题的关键是取值时,注意分式的分母不能为0.21.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.【答案】证明见解析.【解析】【分析】利用正方形的性质证明:AB=BC=CD,∠ABE=∠BCF=90°,再证明BE=CF,可得三角形的全等,利用全等三角形的性质可得答案.【详解】证明:∵四边形ABCD为正方形,∴AB=BC=CD,∠ABE=∠BCF=90°,又∵CE=DF,∴CE+BC=DF+CD即BE=CF,在△BCF和△ABE中,∴(SAS),∴AE=BF.【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.22.某校为了响应市政府号召,在“创文创卫”活动周中,设置了“:文明礼仪;:环境保护;;卫生保洁;:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,=;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.【答案】(1)60,30;(2)画图见解析;(3),【解析】【分析】(1)由B的人数是12人,所占的百分比为20%即可求出总的学生人数,再用18除以总人数即可得到m的值;(2)总人数减去A、B、D的人数即可得到C的人数;(3)采用列举的形式,将所有可能的情况按照从星期一到星期五的顺序列出来,然后再用符合题意要求的情况除以总的情况即可得到概率.【详解】(1),∴本次调查的学生人数为60人,,故m=30.故答案为:60,m=30.(2)C的人数为:60-18-12-9=21(人),补全图形如下所示:(3)星期一到星期五连续的两天为(星期一、星期二),(星期二、星期三),(星期三、星期四),(星期四、星期五)共4种情况,符合题意的只有(星期一、星期二)这一种情况,故概率为;在星期一到星期四任选两天的所有情况如下:(星期一、星期二),(星期一、星期三),(星期一、星期四),(星期二、星期三)、(星期二、星期四),(星期三、星期四)共6种情况,其中有一天是星期三的情况有:(星期一、星期三),(星期二、星期三),(星期三、星期四)共3种情况,所以概率是.故答案为:,.【点睛】本题考查了列表法、扇形统计图、条形统计图以及概率公式:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.甲、乙两家商场平时以同样价格出售相同商品,新冠疫情期间,为了减少库存,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.⑴.以(单位:元)表示商品原价,(单位:元)表示实际购物金额,分别就两家商场的让利方式写出关于的函数关系式;⑵.新冠疫情期间如何选择这两家商场去购物更省钱?【答案】(1);(2)当购买商品原价金额小于200时,选择甲商场更划算;当购买商品原价金额等于200时,选择甲商场和乙商场购物一样划算;当购买商品原价金额大于200时,选择乙商场更划算.【解析】【分析】(1)根据题意,可以分别写出两家商场对应的关于的函数解析式;(2)根据(1)中函数关系式,可以得到相应的不等式,从而可以得到新冠疫情期间如何选择这两家商场去购物更省钱.【详解】解:(1)由题意可得,,当时,,当时,,由上可得,;(2)由题意可知,当购买商品原价小于等于100时,甲商场打9折,乙商场不打折,所以甲商场购物更加划算;当购买商品原价超过100元时,若,即此时甲商场花费更低,购物选择甲商场;若,即,此时甲乙商场购物花费一样;若,即时,此时乙商场花费更低,购物选择乙商场;综上所述:当购买商品原价金额小于200时,选择甲商场更划算;当购买商品原价金额等于200时,选择甲商场和乙商场购物一样划算;当购买商品原价金额大于200时,选择乙商场更划算.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.24.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上所对应的点与所对应的点之间的距离.⑴.发现问题:代数式的最小值是多少?⑵.探究问题:如图,点分别表示的是,.∵的几何意义是线段与的长度之和∴当点在线段上时,;当点点在点的左侧或点的右侧时∴最小值是3.⑶.解决问题:①.的最小值是;②.利用上述思想方法解不等式:③.当为何值时,代数式的最小值是2.【答案】①6;②或;③或【解析】【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.【详解】解:(3)①设A表示的数为4,B表示的数为-2,P表示的数为x,∴表示数轴上的点P到4的距离,用线段PA表示,表示数轴上的点P到-2的距离,用线段PB表示,∴的几何意义表示为PA+PB,当P在线段AB上时取得最小值为AB,且线段AB的长度为6,∴的最小值为6.故答案为:6.②设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则,的几何意义表示为PA+PB,∴不等式的几何意义是PA+PB>AB,∴P不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为或.故答案为:或.③设A表示-a,B表示3,P表示x,则线段AB的长度为,的几何意义表示为PA+PB,当P在线段AB上时PA+PB取得最小值,∴∴或,即或;故答案为:或.【点睛】此题考查了解一元一次不等式,数轴,绝对值,以及数学常识,掌握绝对值的几何意义,学会分类讨论是解决本题的关键.25.如图,⊙是△的外接圆,为直径,点是⊙外一点,且,连接交于点,延长交⊙于点.⑴.证明:=;⑵.若,证明:是⊙的切线;⑶.在⑵的条件下,连接交⊙于点,连接;若,求的长.【答案】(1)证明过程见解析;(2)证明过程见解析;(3)【解析】【分析】(1)连接CO,易证△PCO≌△PAO,得PO为∠APC的角平分线,根据条件证出F为优弧中点,即可证明=;(2)因为AB是直径,所以∠ACB=90°,由tan∠ABC=可求得∠ABC的正弦和余弦,设⊙O的半径为r,则AB=2r,根据三角函数表示出BC,AC的长度,由勾股定理表示出OD的长度,易得PA=PC=,,PO=PD+OD=3r,由可得PA⊥OA,即可证明是⊙的切线;(3)连接AE,过E作EN⊥PD于N,过B作BH⊥PF于H,由(2)可得,,PB=,证出△PEA∽△PAB,可得,证出四边形BCDH是矩形,得BH=CD=,在Rt△BPH和Rt△PEN中表示出sin∠BPH,可得,,ND=PD-PN=,在Rt△NED中,DE=,代入r=3即可【详解】解:(1)证明:如图,连接CO,在△PCO和△PAO中,∴△PCO≌△PAO(SSS),∴∠CPO=∠APO,即PO为∠APC的角平分线,∵PA=PC,∴CD=AD,PF⊥AC,∵AC为⊙O的弦,PF过圆心O,∴F为优弧中点,∴=,(2)证明:∵AB是⊙O的直径,且弦AB所对圆周角为∠ACB,∴∠ACB=90°,∵tan∠ABC=,∴sin∠ABC=,cos∠ABC=,设⊙O的半径为r,则AB=2r,∴BC=ABcos∠ABC=,AC=ABsin∠ABC=,∴,∵PA=PC=AB,∴PA=PC=,∴,∴PO=PD+OD=3r,∴,即PA⊥OA,又∵OA是⊙O半径,∴PA是⊙O的切线;(3)由(2)可得,∴,在Rt△PBA中,,连接AE,可得∠AEB=90°,∴∠PEA=∠PAB=90°,又∠APE=∠APB,∴△PEA∽△PAB,∴,∴,过E作EN⊥PD于N,过B作BH⊥PF于H,如图所示,∴∠BCD=∠CDF=∠BHD=90°,∴四边形BCDH是矩形,∴BH=CD=,在Rt△BPH中,sin∠B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论