




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮北市树人高级中学2022-2023学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“”是“”的
(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:A2.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则在这几场比赛中甲得分的中位数与乙得分的众数分别是(
)A、3,2
B、28,32
C、23,23
D、8,2ks5u参考答案:B3.如图,设向量=(3,1),=(1,3),若=λ+μ,且μ≥λ≥1,则用阴影表示C点的位置区域正确的是()参考答案:C略4.一个空间几何体的三视图如图所示,该几何体的体积为(
)(A)
(B)
(C)
(D)参考答案:B5.以正弦曲线y=sinx上一点P为切点的切线为直线l,则直线l的倾斜角的范围是(
)A.∪
B.
C.
D.∪参考答案:A6.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.
B.
C.
D.参考答案:A略7.已知椭圆a2x2–y2=1的焦距是4,则a=(
)(A)
(B)
(C)
(D)参考答案:C8.已知点在抛物线上,且点P到C的准线的距离与点P到x轴的距离相等,则的值为(
)A.4 B.3 C.2 D.1参考答案:C【分析】求得抛物线的焦点和准线方程,运用抛物线的定义将点P到C的准线的距离转化为P到焦点F的距离,再利用|PF|=|y0|,即可得到x0.【详解】抛物线C:y2=8x的焦点为(2,0),准线方程为x=﹣2,由抛物线的定义可得点P到C的准线的距离即为P到C的焦点F的距离,由题意可得|PF|=|y0|,则PF⊥x轴,可得x0=2,故选:C.【点睛】本题考查抛物线的定义、方程和性质,主要是定义法的运用,考查分析问题的能力,属于基础题.9.甲射击一次命中目标的概率是,乙射击一次命中目标的概率是,丙射击一次命中目标的概率是,现在三人同时射击目标一次,则目标被击中的概率为()A.
B.C.
D.参考答案:A略10.(5分)(2011?辽宁校级模拟)已知m、n、s、t为正数,m+n=2,=9其中m、n是常数,且s+t最小值是,满足条件的点(m,n)是椭圆=1一弦的中点,则此弦所在的直线方程为()A.x﹣2y+1=0B.2x﹣y﹣1=0C.2x+y﹣3=0D.x+2y﹣3=0参考答案:D【考点】:椭圆的简单性质.【专题】:计算题.【分析】:由题设知()(s+t)=n+m+≥=,满足时取最小值,由此得到m=n=1.设以(1,1)为中点的弦交椭圆=1于A(x1,y1),B(x2,y2),由中点从坐标公式知x1+x2=2,y1+y2=2,把A(x1,y1),B(x2,y2)分别代入x2+2y2=4,得,①﹣②,得2(x1﹣x2)+4(y1﹣y2)=0,k=,由此能求出此弦所在的直线方程.解:∵sm、n、s、t为正数,m+n=2,=9,s+t最小值是,∴()(s+t)的最小值为4∴()(s+t)=n+m+≥=,满足时取最小值,此时最小值为=2+2=4,得:mn=1,又:m+n=2,所以,m=n=1.设以(1,1)为中点的弦交椭圆=1于A(x1,y1),B(x2,y2),由中点从坐标公式知x1+x2=2,y1+y2=2,把A(x1,y1),B(x2,y2)分别代入x2+2y2=4,得,①﹣②,得2(x1﹣x2)+4(y1﹣y2)=0,∴k=,∴此弦所在的直线方程为,即x+2y﹣3=0.故选D.【点评】:本题考查椭圆的性质和应用,解题时要认真审题,注意均值不等式和点差法的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11.曲线y=2x﹣x3在x=﹣1的处的切线方程为
.参考答案:x+y+2=0【考点】6H:利用导数研究曲线上某点切线方程.【分析】根据导数的几何意义求出函数在x=﹣1处的导数,从而得到切线的斜率,再利用点斜式方程写出切线方程即可.【解答】解:y'=2﹣3x2y'|x=﹣1=﹣1而切点的坐标为(﹣1,﹣1)∴曲线y=2x﹣x3在x=﹣1的处的切线方程为x+y+2=0故答案为:x+y+2=012.双曲线上一点P到一个焦点的距离是10,那么点P到另一个焦点的距离是____________________.参考答案:略13.已知正△ABC的边长为1,那么在斜二侧画法中它的直观图△A′B′C′的面积为
.参考答案:【考点】斜二测法画直观图.【专题】数形结合;定义法;空间位置关系与距离.【分析】由直观图和原图的面积之间的关系,直接求解即可.【解答】解:正三角形的高OA=,底BC=1,在斜二侧画法中,B′C′=BC=1,0′A′==,则△A′B′C′的高A′D′=0′A′sin45°=×=,则△A′B′C′的面积为S=×1×=,故答案为:.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查14.设变量满足约束条件,则函数的最大值为
▲
;参考答案:1015.抛物线x2=y的焦点坐标为.参考答案:考点:抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:根据方程得出焦点在y正半轴上,p=即可求出焦点坐标.解答:解:∵抛物线x2=y,∴焦点在y正半轴上,p=∴焦点坐标为(0,),故答案为;(0,),点评:本题考查了抛物线的方程与几何性质,求解焦点坐标,属于容易题.16.甲、乙两名篮球运动员在某几场比赛得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是
.参考答案:64略17.已知x1,x2是关于x的方程x2-ax+a2-a+=0的两个实根,那么的最小值为_______,最大值为________.参考答案:0,三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知(1)化简;(2)若为第三象限角,且,求的值;(3)若,求的值.参考答案:(1)……4分(2)为第三象限角……8分
(3)……12分19.已知函数f(x)=|x+a|+|x﹣2|.(Ⅰ)当a=﹣3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.参考答案:【考点】R5:绝对值不等式的解法.【分析】(1)通过讨论x的范围,得到关于x的不等式组,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3即|x﹣3|+|x﹣2|≥3,即①,或②,或③;解①可得x≤1,解②可得x∈?,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].20.已知数列{an}为等比数列,,是和的等差中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设,求数列{an+bn}的前n项和Tn.参考答案:(Ⅰ)设数列的公比为,∵,∴,.∵是和的等差中项,∴.…………1分即,化简得.…………3分∵公比,∴.…………4分∴().…………6分(Ⅱ)∵,∴.…………7分∴.…………8分…………10分…………12分(20)21.已知椭圆C:的离心率为,且过点P(1,),F为其右焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点A(4,0)的直线l与椭圆相交于M,N两点(点M在A,N两点之间),若△AMF与△MFN的面积相等,试求直线l的方程.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)根据椭圆C:的离心率为,椭圆方程可化为,又点P(1,)在椭圆上,即可求得椭圆方程;(Ⅱ)易知直线l的斜率存在,设l的方程为y=k(x﹣4),与椭圆方程联立,借助于韦达定理,及△AMF与△MFN的面积相等,即可求得直线l的方程.【解答】解:(Ⅰ)∵椭圆C:的离心率为,∴,所以a=2c,b=c.…设椭圆方程为,又点P(1,)在椭圆上,所以,解得c=1,…所以椭圆方程为.…(Ⅱ)易知直线l的斜率存在,设l的方程为y=k(x﹣4),…由,消去y整理,得(3+4k2)x2﹣32k2x+64k2﹣12=0,…由题意知△=(32k2)2﹣4(3+4k2)(64k2﹣12)>0,解得.…设M(x1,y1),N(x2,y2),则①,②.因为△AMF与△MFN的面积相等,所以|AM|=|MN|,所以2x1=x2+4③…由①③消去x2得x1=④将x2=2x1﹣4代入②得x1(2x1﹣4)=⑤将④代入⑤,整理化简得36k2=5,解得,经检验成立.…所以直线l的方程为y=(x﹣4).…22.过M(﹣1,0)做抛物线C:y2=2px(p>0)的两条切线,切点分别为A,B.若.(1)求抛物线C的方程;(2)N(t,0),(t≥1),过N任做一直线交抛物线C于P,Q两点,当t也变化时,求|PQ|的最小值.参考答案:【考点】抛物线的标准方程;直线与抛物线的位置关系.【分析】(1)?MA?MB=90°,由抛物线的对称性可得:KMA=1,直线l的方程与抛物线方程联立化为:y2﹣2px+2p=0.利用△=0,即可得出p.(2)设PQ的方程为:x=my+t,代入抛物线方程可得y2﹣4m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公众平台活动方案
- 2025至2030年中国书灯行业投资前景及策略咨询报告
- 2025至2030年中国S端子线行业投资前景及策略咨询报告
- 浙江国企招聘2025温州市南陆港开发建设有限公司招聘15人笔试参考题库附带答案详解
- 数字水利工程中DeepSeek人工智能大模型应用方案
- 电子商务法律法规应用知识要点
- 公司一学三比活动方案
- 公司三八节日活动方案
- 公司不定期晨会活动方案
- 公司业务部团购活动方案
- 智慧小区建设方案
- 《长QT综合征》课件
- 2024国家安全教育大学生读本题库
- DBJ04T 439-2023 房屋建筑和市政基础设施工程造价指标指数编制标准
- 新版统编版一年级道德与法治下册全册教案(完整版)教学设计含教学反思
- 2025年上半年广东汕尾市城区招聘政府聘员69人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年不动产登记代理人《地籍调查》考试题库大全(含真题、典型题)
- 2025版MCN公司艺人合作签约合同范本3篇
- 财务服务协议书
- YC/Z 623-2024烟草商业企业卷烟物流应急作业指南
- GB/T 45098-2024营运纯电动汽车换电服务技术要求
评论
0/150
提交评论