山西省运城市夏县第二中学高三数学文上学期摸底试题含解析_第1页
山西省运城市夏县第二中学高三数学文上学期摸底试题含解析_第2页
山西省运城市夏县第二中学高三数学文上学期摸底试题含解析_第3页
山西省运城市夏县第二中学高三数学文上学期摸底试题含解析_第4页
山西省运城市夏县第二中学高三数学文上学期摸底试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省运城市夏县第二中学高三数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数(其中为常数)的图象关于直线对称,(

)A、

B、C、

D、参考答案:C2.设a>0,b>0.[A.若,则a>bB.若,则a<bC.若,则a>bD.若,则a<b参考答案:A若,必有.构造函数:,则恒成立,故有函数在x>0上单调递增,即a>b成立.其余选项用同样方法排除.3.已知某几何体的三视图如图所示,则该几何体的最大边长为、 、

、参考答案:根据三视图作出原几何体(四棱锥)的直观图如下:可计算,故该几何体的最大边长为.4.

实数a,b,c满足f(a)f(b)f(c)<0,且0<a<b<c.若实数是f(x)的一个零点,则下列不等式中不可能成立的是

)(A)

<a

(B)

>b

(C)<c

(D)>c参考答案:D略5.若a=30.6,b=log30.2,c=0.63,则()A.a>c>b B.a>b>c C.c>b>a D.b>c>a参考答案:A【考点】有理数指数幂的化简求值.【专题】计算题.【分析】利用指数函数与对数函数的性质可知,a>1,b<0,0<c<1.从而可得答案.【解答】解:∵a=30.6>a=3°=1,b=log30.2<log31=0,0<c=0.63<0.60=1,∴a>c>b.故选A.【点评】本题考查指数函数与对数函数的性质,考查有理数指数幂的化简求值,掌握指数函数与对数函数的性质是解决问题的关键,属于基础题.6.等比数列的首项为1,公比为q,前n项和为S,则数列项之和为(

A.

B.S

C.

D.参考答案:答案:C7.已知双曲线的一条渐近线为,则它的离心率为参考答案:A8.在某学校组织的一次数学模拟考试成绩统计中,工作人员采用简单随机抽样的方法,抽取一个容量为50的样本进行统计,若每个学生的成绩被抽到的概率为0.1,则可知这个学校参加这次数学考试的人数是

A.100人

B.600人

C.225人

D.500人参考答案:D9.已知全集U=R,集合,集合,那么(A)

(B)(C)

(D)参考答案:B略10.已知向量,向量且,则的最小值为(

)A.2

B.

C.1

D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.设函数f(x)=则函数y=f(x)与y=的交点个数是.参考答案:4【考点】根的存在性及根的个数判断.【专题】作图题;函数的性质及应用.【分析】在同一坐标系中,作出函数y=f(x)==与y=x的图象,数形结合即可知二曲线交点的个数.【解答】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.【点评】本题考查根的存在性及根的个数判断,考查作图与识图能力,属于中档题.12.已知变量满足约束条件,若的最大值为,则实数

.(

参考答案:或13.已知数列是公差为2的等差数列,且,,则

.参考答案:数列是公差为2的等差数列,且a1=1,a3=9,∴﹣=(﹣1)+2(n﹣1),﹣=(﹣1)+2,∴3﹣=(﹣1)+2,∴a2=1.∴﹣=2n﹣2,∴=2(n﹣1)﹣2+2(n﹣2)﹣2+……+2﹣2+1=﹣2(n﹣1)+1=n2﹣3n+3.∴an=.n=1时也成立.则an═.故答案为:.

14.(考生注意:请在下列三题中任选一题作答,如果多做则按所做的第一题评分)

A.(不等式选讲)已知函数.若关于x的不等式的解集是R,则m的取值范围是

参考答案:15.已知下列命题:①命题:?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3;②若f(x)=2x﹣2﹣x,则?x∈R,f(﹣x)=﹣f(x);③若f(x)=x+,则?x0∈(0,+∞),f(x0)=1;④等差数列{an}的前n项和为Sn,若a4=3,则S7=21;⑤在△ABC中,若A>B,则sinA>sinB.其中真命题是

.(只填写序号)参考答案:①②④⑤【考点】命题的真假判断与应用.【分析】①,根据含有量词的命题的否定形式判定;②,若f(x)=2x﹣2﹣x,则?x∈R,f(﹣x)=﹣f(x),;③,对于函数f(x)=x+,当且仅当x=1时,f(x)=1;④,,;⑤,若A>B,则a>b,?2RsinA>2RsinB?sinA>sinB,.【解答】解:对于①,命题:?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3,正确;对于②,若f(x)=2x﹣2﹣x,则?x∈R,f(﹣x)=﹣f(x),正确;对于③,对于函数f(x)=x+,当且仅当x=0时,f(x)=1,故错;对于④,等差数列{an}的前n项和为Sn,若a4=3,,故正确;对于⑤,在△ABC中,若A>B,则a>b?2RsinA>2RsinB?sinA>sinB,故正确.故答案为:①②④⑤【点评】本题考查了命题真假的判定,涉及到了函数、数列等基础知识,属于中档题.16.某几何体的三视图如图所示,则其体积为

参考答案:17.已知,,设,的夹角为,则___________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(k∈R)的最大值为h(k).(1)若k≠1,试比较h(k)与的大小;(2)是否存在非零实数a,使得h(k)>对k∈R恒成立,若存在,求a的取值范围;若不存在,说明理由.参考答案:【考点】利用导数求闭区间上函数的最值.【分析】(1)通过求导,利用导数研究函数的单调性,可得其极值与最值,对k分类讨论,即可比较出大小关系.(2)由(1)知,可得.设,求导令g'(k)=0,解得k.对a分类讨论即可得出g(k)的极小值最小值.【解答】解:(1).令f'(x)>0,得0<x<ek+1,令f'(x)<0,得x>ek+1,故函数f(x)在(0,ek+1)上单调递增,在(ek+1,+∞)上单调递减,故.当k>1时,2k>k+1,∴,∴;当k<1时,2k<k+1,∴,∴.(2)由(1)知,∴.设,∴,令g'(k)=0,解得k=﹣1.当a>0时,令g'(k)>0,得k>﹣1;令g'(x)<0,得k<﹣1,∴,∴.故当a>0时,不满足对k∈R恒成立;当a<0时,同理可得,解得.故存在非零实数a,且a的取值范围为.19.已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是(t为参数).(1)将曲线C的极坐标方程转化为直角坐标方程;(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.参考答案:【考点】直线和圆的方程的应用;点的极坐标和直角坐标的互化;参数方程化成普通方程.【专题】转化思想.【分析】(1)极坐标直接化为直角坐标,可求结果.(2)直线的参数方程化为直角坐标方程,求出M,转化为两点的距离来求最值.【解答】解:(1)曲C的极坐标方程可化为:ρ2=2ρsinθ,又x2+y2=ρ2,x=ρcosθ,y=ρsinθ.所以,曲C的直角坐标方程为:x2+y2﹣2y=0.(2)将直线L的参数方程化为直角坐标方程得:.令y=0得x=2即M点的坐标为(2,0)又曲线C为圆,圆C的圆心坐标为(0,1)半径,∴.【点评】本题考查极坐标和直角坐标的互化,直线的参数方程化为直角坐标方程,转化的数学思想的应用,是中档题.20.等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{}的前n项和.参考答案:【考点】等比数列的通项公式;数列的求和.【分析】(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设bn=log3a1+log3a2+…+log3an,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到bn的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n项和.【解答】解:(Ⅰ)设数列{an}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{an}的通项式为an=.(Ⅱ)bn=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,所以数列{}的前n项和为﹣.21.在直角坐标系xOy中,已知圆C:(θ为参数),点P在直线l:x+y﹣4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.(I)求圆C和直线l的极坐标方程;(II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR|?|OQ|,求Q点轨迹的极坐标方程.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)圆C:(θ为参数),可得直角坐标方程:x2+y2=4,利用互化公式可得圆C的极坐标方程.点P在直线l:x+y﹣4=0上,利用互化公式可得直线l的极坐标方程.(Ⅱ)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),由,又|OP|2=|OR|?|OQ|,即可得出.【解答】解:(Ⅰ)圆C:(θ为参数),可得直角坐标方程:x2+y2=4,∴圆C的极坐标方程ρ=2.点P在直线l:x+y﹣4=0上,直线l的极坐标方程ρ=.(Ⅱ)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),因为,又因为|OP|2=|OR|?|OQ|,即,∴,∴ρ=.22.

二次函数,它的导函数的图象与直线平行.(Ⅰ)求的解析式;(Ⅱ)若函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论